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What Do You Want To Know?

Information Acquisition and Learning

in Experimental Cournot Games �

Maria Bigoniy

Abstract

This paper presents an experiment designed to study �rms�behavior
and market dynamics, when information about the market structure and
opponents�actions is di¢ cult to acquire and process. Our experimental
software controls the information acquisition process of the subjects. Pay-
ing attention not only to what players do, but also to what they know,
it is possible to better understand the cognitive processes guiding their
choices and, consequently, the impact of the informational structure on
their behavior. According to our results, Best-Response Dynamics is the
main component of subjects� learning process. We also �nd that, when
subjects look at the strategies individually adopted by their competitors,
they tend to imitate the most successful behavior, which drives the mar-
ket towards a more competitive outcome.

Keywords: Experiments, Learning, Information, Oligopoly, Mouselab.
JEL Classi�cations: L13, C91, C72

1 Introduction

The classical approach to the theory of tacit collusion entails a model of re-
peated interaction among �rms, in which market demand and cost functions
are common knowledge, and �rms are able to predict what their pro�ts will be
inde�nitely in the future.
However, there are situations in which such assumptions are not realistic.

For instance, uncertainty about market demand, or the opponents�costs, can
make it di¢ cult to coordinate on the joint-pro�t maximizing outcome, and the
lack of information about competitors�past actions can hinder the detection of
defections. One may then wonder whether � if the context is stable enough �
�rms are able to �learn�from past experience and to get to collusion anyway.

�I am indebted to Sven Olof Fridolfsson and Chloè Le Coq for help in organizing and
conducting the experiments. I am also grateful to Giancarlo Spagnolo, Ken Binmore, Magnus
Johannesson, Andreas Ortmann, Davide Dragone, and to the participants of the 2007 AFSE-
JEE meeting in Lyon for helpful comments and suggestions. A special thank goes to Giovanni
Ponti, for his precious help in redacting the �nal version of the paper. The usual disclaimer
applies.

yDepartment of Economics, University of Bologna. Piazza Scaravilli 2, 40126, Bologna,
Italy. e-mail: maria.bigoni@unibo.it.
Telephone number: +39 051 2098890. Fax: +39 051 0544522.
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This paper aims at studying �rms�behavior and markets�dynamics in such
situations. A repeated Cournot game is reproduced in a controlled experimental
setting, in which subjects are provided with very limited ex ante information
about the market structure. In each round they can acquire additional informa-
tion, both on the market structure and on market outcomes in previous rounds.
The information acquisition process is controlled in a strict but non-obtrusive
way, via the software MouselabWEB, which allows the experimenter to verify
which information the decision makers look at and for how long.1 In this way,
it is possible to make inference on the impact of di¤erent informational inputs
on subjects�actual behavior, and on the learning mechanisms adopted by the
players. We borrow this methodology from Johnson et al. (1988). A similar
approach was also used in Costa-Gomes et al. (2001), Johnson et al. (2002),
Costa-Gomes and Crawford (2006), Gabaix et al. (2006). However, to the best
of our knowledge, so far these techniques have been applied to the study of
one-shot games only.
While the framing of the experiment, described in Section 2, is pretty close

to the one adopted in previous works on learning in oligopoly games, our ex-
perimental technique is novel, as in our set-up subjects are free to choose what
information to acquire, and we can monitor this choice. In contrast, in previous
papers the informational framework was varied exogenously across treatments.2

A second element of novelty is that players face virtual opponents enacted by
computerized automata. This guarantees control over the learning rule adopted
by players�opponents and allows us to check if and how this learning rule a¤ects
the information search and the subjects�market behavior.3

Our results suggest that the information gathered by subjects a¤ects their
choices through a composite learning mechanism, in which di¤erent compon-
ents coexist. Best-Response Dynamics seems to be the most important factor,
as subjects try to form expectations about their opponents�future actions and
to optimally react to them. However, when subjects also look at the strategies
individually adopted by their competitors, they tend to imitate the most success-
ful behavior, which makes market outcomes more competitive. Finally, our data
suggest that the opponents� learning rule does not have a very strong impact
on players�information acquisition and learning processes.
The paper proceeds as follows. Section 2 introduces the market setting and

presents three alternative theoretical benchmarks. The experimental design
and procedures are presented in Section 3. Experimental results are described
in Section 4, while Section 5 concludes. Instructions for the experiment are
reported in the Appendix.

2 Stage Game and Theoretical Predictions

In all treatments, the basic layout remains the same. Four identical �rms com-
pete à la Cournot in the same market for 40 consecutive rounds. Their product
is perfectly homogeneous. In every round t each �rm i chooses its own output qti

1This software was developed by Martijn C. Willemsen and Eric J. Johnson, and is available
from the website http://www.mouselabweb.org/index.html

2Previous articles on learning in oligopolistic markets that are most closely related to the
present work are Huck et al. (1999), Rassenti et al. (2000), O¤erman et al. (2002) and
Bosch-Domènech and Vriend (2003).

3See Duersch et al. (2005) for a similar approach.
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from the discrete set � = f0; 1; :::; 30g, which is the same for every �rm. Choices
are simultaneous.
Price pt in round t is determined by the inverse demand function:

pt = max(0; 81�
X
i

qti)

Let Ci(qti) = q
t
i be the cost function for every �rm i ; �rm i�s pro�t in round t

will be denoted by
�ti = p

tqti � Ci(qti):

These functions were chosen so that the three main theoretical outcomes �
namely collusive (joint pro�t maximizing), Cournot and Walrasian �are su¢ -
ciently far one from the other and belong to the choice set �. More precisely,
collusive equilibrium is denoted by !M = (10; 10; 10; 10), Cournot-Nash equilib-
rium is !N = (16; 16; 16; 16) and Walrasian equilibrium is !W = (20; 20; 20; 20).

2.1 Three Theoretical Benchmarks

We are interested in studying the market dynamics when the stage-game we
just described is repeated, and �rms do not have all the information (or the
computational capabilities) to evaluate what the standard theory predicts to be
their optimal behavior. A number of learning models that could be e¤ectively
adopted to study such a situation have been developed in the last 20 years.
Table 1 reports the learning models which are relevant in the context of our
research.

Rule Required
information

Predicted
equilibrium

1. Best-Response Dynamics Competitors�
aggregate quantity
and BR function

Nash (q = 16)

2. Imitate-the-Best Last round
individual pro�ts
and quantities

Walrasian (q = 20)

3. Trial-and-Error Own past pro�ts
and quantities

Collusive (q = 10)

Table 1: Theoretical benchmarks

As Table 1 shows, we only focus on three learning models, namely Best-
Response Dynamics (Cournot 1838; Huck et al. 1999), Imitate-the-Best (Vega-
Redondo 1997) and Trial-and-Error (Huck et al. 2000; Huck et al. 2004). The
choice of these three models is justi�ed for the following reasons: �rst, they
are particularly simple; second, they are based on very di¤erent informational
requirements; third, they yield well distinct market outcomes in the long run,
namely the Cournot, Walrasian and collusive outcomes, respectively. The three
models �described in the remainder of this session �will play an important role
in the design of the experiment, as illustrated in Section 3, and will also be used
as benchmarks for the econometric analysis in Section 4.
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Best-Response Dynamics. This adjustment process was originally proposed
by Cournot (1838) in his duopoly analysis. Under the best-response dynamics
each subject sets his current output equal to the best (i.e., current round payo¤
maximizing) response to the last round output of his rivals. Cournot proved
that this adjustment process converges to the unique Nash equilibrium for a
duopoly with linear demand and constant marginal cost. It is generally well
known that best-response dynamics does not converge to a stable equilibrium
in oligopolies with a linear setup and three or more �rms, as proven by the
general instability result found by Theocharis (1960). Yet, it has been shown
by Huck et al. (1999) that this process converges to the static Nash equilib-
rium if some inertia is introduced, namely, if it is assumed that, in every round,
with some positive probability each player sticks to the strategy he chose in the
previous round.
As for the informational requirements, this model of learning presumes that

agents are able to observe their rivals�past play and that their computational
capabilities and knowledge of the market structure are su¢ cient for them to
compute their best-response, given the strategy pro�le adopted by their oppon-
ents.

Imitate-the-Best Vega-Redondo (1997) proposed a theoretical model of be-
havior of Cournot oligopolists which leads to surprising conclusions. The beha-
vioral rule described in the model essentially prescribes to �imitate the best�,
i.e. to produce, in each round, the quantity produced in the previous round by
the �rm that got the highest pro�t.4 The author shows that in the long run
a Walrasian behavior results, within any quantity-setting oligopoly producing
an homogeneous good, provided that the market demand curve is downward
sloping.
It can be shown that if all the �rms active in the market conform to this

rule, the induced market dynamics can be characterized as a Markov chain. If
the learning process were to consist only of an imitation component, each mono-
morphic state (i.e. each state in which all �rms produce the same quantity),
would be an absorbing state of the Markov process. To investigate the relative
robustness of these outcomes, Vega-Redondo (1997) adds to the learning dy-
namics a �noise�dynamics.5 This implies that, with some common independent
probability, in every round each �rm may �mutate�, so that all of the possible
quantities can be chosen with a given positive probability. The dynamic market
process then becomes ergodic, and one can �nd the unique invariant distribu-
tion to which the process converges in the long-run, and study its asymptotic
behavior as the probability of mutation approaches 0. Vega-Redondo (1997)�s
main result is that the whole mass of the limit invariant distribution is concen-
trated on the monomorphic state in which all the �rms produce the Walrasian
quantity.
To �imitate the best�, �rms must have the opportunity to observe the

strategy individually adopted by each of the competitors, and they need to
know the individual pro�ts of each of the opponents, or at least they must be
able to infer it from the information they have on the market structure.

4An alternative model of learning based on imitation is presented in Schlag (1998).
5A similar approach is adopted in Kandori et al. (1993) and Peyton Young (1993).
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Trial-and-Error This model of learning has been proposed by Huck et al.
(2000, 2004). It makes few assumptions about both the availability of informa-
tion and �rms�cognitive abilities, as it just requires that they know their own
past actions and their own pro�ts. Framed in a standard symmetric Cournot
oligopoly with n �rms, this learning rule simply says that a subject would not
repeat a mistake, i.e. if pro�ts last round have decreased after an increase in
quantity, then one would not increase quantity again. On the other hand, if
pro�ts have increased following an increase in quantity, one would not decrease
quantity next round. As in Imitate-the-Best, some degree of experimentation
is introduced by assuming that, with some small probability, each �rm chooses
an arbitrary direction of change, instead of following the model�s prescription.
Trial-and-Error learning can be thought of as a particularly simple form of dir-
ection learning (Selten and Stoecker 1986, Selten et al. 2005). According to
learning direction theory, agents should reconsider their past experiences to �g-
ure out what would have been a better choice, and adjust their next decision in
this direction. Under Trial-and-Error it is not assumed that players know their
payo¤ function. As a consequence, they may not be able to infer what could
have been better in the past, and can only judge how successful a change in
action was, on the basis of their own experience.
Huck et al. (2000) show that, if each �rm can choose its outcome from a

�nite grid, Trial-and-Error rule de�nes a Markov process that converges to the
joint pro�t maximizing equilibrium if the cost function is weakly convex and
market conditions are such that there exists only one symmetric situation in
which joint pro�ts are maximized.

3 Experimental Design

To reduce strategic uncertainty and increase the number of independent ob-
servations, we let subjects play against three �virtual�players enacted by the
computer and programmed to follow a speci�c learning rule.6 In this way we
can control for the e¤ect of the opponents�behavior on players�choices. The
treatment variable is then represented by the learning rule adopted by the vir-
tual opponents. Note that the three opponents of the same subject are all
programmed to follow the same learning rule.
To avoid deception, subjects are informed that their opponents are �autom-

ata�, that is: they are enacted by the computer. Subjects also know that these
automata do not play at random but choose according to some rule, nonethe-
less they do not necessarily choose the same output. No other information is
provided about the way the automata play.
The experiment is repeated under three treatments. We will present �rst

the elements which are common across treatments, then explain the di¤erences.

3.1 Information Provided to the Subjects

Participants know how many competitors they have. Instructions explain in
plain words that there is an inverse relation between the overall quantity pro-
duced by the four �rms and market price, and that a �rm�s total production

6A related experiment in which subjects play against each other is presented in a companion
paper (Bigoni 2009).
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Figure 1: First function of the pro�t calculator.

Figure 2: Second function of the pro�t calculator.

cost increases with the number of goods it sells. Besides, players are told that a
�rm�s per-round pro�t is given by market price times the number of goods sold,
minus production costs.7

Subjects are also endowed with a pro�t calculator similar to the one proposed
by Huck et al. (1999). This device has two input �elds that the subject can
�ll in: one for the total quantity produced by the other three �rms in the
market, one for the quantity produced by his own �rm. If the player enters two
(arbitrary) values, one for each of these �elds, the pro�t calculator evaluates
market price and the pro�t the subject would earn (Figure 1); if the subject
just �lls in the �eld pertaining to competitors�quantity and leaves the other
one blank, the pro�t calculator computes the quantity that would yield him the
highest pro�t and inform him about market price and pro�ts he would earn,
should he produce the suggested amount of good (Figure 2). The software we
developed for this experiment records how many times subjects used the pro�t
calculator and every trial they did.

7A copy of the instructions is provided in Appendix.
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The number of rounds is equal to 40, and it is common knowledge among
subjects.8 After the �rst round, each player has the opportunity to look at three
plots summing up information about what happened in the previous rounds
(Figure 3). The graph in the top-left corner shows the quantity and the pro�t
obtained by the player�s �rm in each of the previous rounds. The graph in the
top-right corner is a bar-plot showing the quantity produced by each of the four
�rms in the market in the previous round, and the relative pro�t. The third
graph displays the quantity produced by the player�s �rm compared with the
aggregate quantity produced by his three competitors in each of the previous
rounds, since the game began.9 Subjects, however, are not able to look at all the
three plots at the same time, since these plots are hidden behind three boxes on
the computer screen and the player can open just one box at a time. Behind a
fourth box is hidden the answer provided by the pro�t calculator. A box can be
opened just putting the mouse cursor over it, and its content will be displayed
on the screen until the cursor moves out of the box�s borders. The software
automatically records subjects�look-ups sequences and look-ups durations.
Besides these four boxes, on the computer screen there is a counter showing

the cumulative pro�ts earned by the player since the beginning of the experi-
ment, and a timer displaying the current round�s length, in seconds. After the
last round, participants are shown their overall pro�t, compared with those of
their three opponents.

3.2 Treatments

This experiment has been run under three conditions, which di¤er only by the
learning rule adopted by the computer (Rule 1 to 3 in Table 1). In what fol-
lows we brie�y recapitulate the rule adopted by the automata in each of the
treatments.

Trial-and-Error (T&E) We programmed the computer so that in this treat-
ment each automaton i sets its quantity qti in round t equal to

qti = q
t�1
i + st�1i

where the quantity variation sti 2 f�1; 0; 1g is given by

sti = 1 � sign(qti � qt�1i ) � sign(�ti � �t�1i )

if (qti � qt�1i )(�ti � �t�1i ) 6= 0, where �ti are the pro�ts of �rm i at round t. If
instead (qti � qt�1i )(�ti � �t�1i ) = 0, the quantity variation is chosen at random
from a uniform distribution over the set f�1; 0; 1g.
We also introduced a positive probability of error in the algorithm, so that

in every round, with probability � = 0:05 each automaton randomly draws the
quantity variation sti from a uniform distribution over f�1; 0; 1g.

8This is in line with the procedure adopted in related works (Huck et al. 1999; Rassenti
et al. 2000; O¤erman et al. 2002; Bosch-Domènech and Vriend 2003), and with considerations
made in Selten et al. (1997), and Normann and Wallace (2006).

9The order in which thee plots are presented varies across subjects, but it remains �xed
across rounds.
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Figure 3: Screenshot of the graphical interface.
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Best-Response Dynamics (BRD) In this treatment, the three automata
behave according to the best-response dynamics. Therefore, in every round after
the �rst one, they set their quantity qti according to the following rule:

qti =

8>>>><>>>>:
0; if

P
j 6=i q

t�1
j � 80

min
�
30;

80�
P

j 6=i q
t�1
j

2

�
if
P

j 6=i q
t�1
j < 80 and

P
j 6=i q

t�1
j is even

min
�
30;

80�
P

j 6=i q
t�1
j

2 + 0:5

�
if
P

j 6=i q
t�1
j < 80 and

P
j 6=i q

t�1
j is odd

We introduced some inertia into the algorithm governing the automata in
treatment BRD: with independent probabilities equal to 0.05, in every round,
each of them chooses qti = qt�1i , otherwise it follows the myopic best-response
dynamics.

Imitate-the-Best (ItheB) In the last treatment (ItheB) the automata be-
have according to Vega-Redondo (1997)�s algorithm. Automata are programmed
to choose their output qti equal to:

qti = q
t�1
j where j 2 I and �t�1j � �t�1h 8h 2 I; h 6= j

To introduce a small degree of noise in the automata�s behavior, we pro-
grammed them to choose their quantity according to the Imitate-the-Best rule,
with a probability equal to 0.95, while with a 0.05 probability they choose a
random quantity.10

In all the three treatments, the quantity set by the automata in the �rst
round is randomly drawn from a uniform distribution over the set �.

We adopted a within-subjects design, so every subject played against a single
type of automata. The program was designed using MouselabWEB.11 Two
sessions of this experiment were run at the Stockholm School of Economics, on
April 2, 2007. Twelve undergraduate students took part in the �rst session and
eleven took part in the second one. Sessions lasted about one hour and a half,
and the average payment (including the show up fee) was equal to 19.15 e.12

In total, 7 subjects played under the ItheB treatment, and 8 under each of the
other two treatments.
At the beginning of each session, participants were welcomed and seated in

the lab. Tables and computers were arranged so to avoid any form of com-
munication between participants. As soon as all subjects were ready to start,
instructions were displayed on their computer screens, and each subject could
read them at his own pace. Instructions were split into several parts and at the
end of each of them an understanding test was submitted to the reader, who
had to answer correctly before proceeding to the next page. When a subject
�nished reading the instructions he could start playing. At the end of the ses-
sion, participants were called one by one in private and paid according to their
total pro�ts.
10This random quantity is equal bxc, where x is drawn from a normal distribution over

the set � = f0; 1; : : : ; 29; 30g, with mean equal to the quantity the automaton chose in the
previous round, and a standard deviation equal to 10.
11Martijn C. Willemsen and Eric J. Johnson, http://www.mouselabweb.org
12Payment was done in Swedish Kronors (SEK); 1 SEK was about e0.107 at the time the

experiment took place, hence the average payment was 179 SEK.
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4 Results

In what follows, we �rst examine the quantities chosen by the players, and show
that they di¤er substantially across treatments, and are generally far from the
theoretical benchmarks derived from the three models introduced in Section
2.1. Then, we investigate how information was used, and observe that in all
treatments subjects pay much attention to opponents� actions and pro�ts in
the previous round, which is the information required by the Imitate-the-Best
learning rule. Finally, we try to establish a relation between information search
patterns and actual behavior by means of a learning model. Results suggest
that subjects�learning process is mainly driven by a Best-Response-Dynamics,
but it is also a¤ected by a tendency to imitate the best performer.

4.1 Quantities

Table 2: Avearge quantities and prices across treatments

treatment player�s competitors� predicted price predicted
quantity quantity quantity price

40 rounds
BRD 17.98 15.56 16 17.19 17
ItheB 14.72 18.46 20 12.69 1
T&E 19.05 13.01 10 22.93 41

Total 17.36 15.56 17.82
last 10 rounds

BRD 19.16 15.30 16 16.64 17
ItheB 13.39 18.25 20 14.60 1
T&E 20.79 11.45 10 25.88 41

Total 17.97 14.86 19.23

Table 2 displays the average quantities produced by the subjects and by
their virtual competitors in the three treatments, �rst across all the 40 rounds,
then just for the last 10 rounds.
First, we notice that subjects react di¤erently when faced with di¤erent

opponents. The average quantity chosen by the subjects under T&E and BRD
is higher than under ItheB.13

If all subjects followed exactly one of the three learning rules adopted by the
automata, we would observe a convergence towards the predicted equilibrium in
at least one of the three treatments. Figure 4 shows that, in fact, the quantity
chosen on average by the automata (represented by a solid line in the graph) is

13Wilcoxon rank-sum tests reject the hypothesis that observed quantities under ItheB and
under BRD come from the same distribution at the 5% signi�cance level, and the hypothesis
that observed quantities under T&E and under ItheB come from the same distribution at 1%
signi�cance level. In contrast, the di¤erence between BRD and T&E is not signi�cant. In these
and in the following tests, averages at subject level are taken as independent observations.
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Figure 4: Average quantities chosen by subjects and by their virtual competit-
ors.

relatively close to the theoretically predicted one (indicated with a dotted line).
Yet, according to a Wilcoxon signed-rank test, only for treatment BRD the
di¤erence between actual and predicted quantity is not signi�cant, while for the
other two treatments it is signi�cant at the 5% level. In contrast, the average
quantity chosen by the subjects (represented by the dashed line in the graph)
is far from the theoretical benchmark, and the distance between actual and
predicted quantity increases if we look only at the last ten rounds.14 Learning
and experience seem to drive subjects away from the predicted equilibria.
Quantities chosen in this game seem to be substantially driven by the mech-

anical behavior adopted by the automata. What is really interesting here, in-
stead, is the way players use the information they are provided, and how this
a¤ects their choices.

4.2 Attention

Figure 5 shows the average share of look-up time dedicated by each subject
to the four pieces of information they could access during the game. The �rst
noticeable fact is that in all treatments most of players�attention is dedicated to
the plot that represents pro�ts earned and quantities produced in the previous
round by the player himself and by each of his competitors. This means, for
example, that if they wanted to imitate the best performer in the previous round,
as suggested by Vega-Redondo (1997), in general they knew the information
necessary to do it. By contrast, Trial-and-Error is less supported by our data,
because subjects do not seem to be very interested in the graph representing the
series of player�s own pro�ts and quantities, which includes the only information
required to apply this learning model.
From Figure 5 it also appears that in treatment ItheB the share of attention

14The di¤erence is signi�cant at the 5% level for treatments ItheB and T&E, and at the
10% level in tretament BRD, according to Wilcoxon signed rank tests.
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Figure 5: Distribution of players�attention in the three treatments.

allocated to what opponents have done and earned in the previous round is
higher than in the other two treatments. Yet, Wilcoxon rank-sum tests do not
reject the hypothesis that the share of attention allocated to the di¤erent pieces
of information is the same across treatments.

Figure 6 looks at how the allocation of attention evolves along the whole
experiment. There, we notice the presence of a trend which is common across
treatments. In the �rst round, all the look up time is devoted to the pro�t
calculator which is the only information available, probably in the attempt of
�guring out how the market works. Then, from the second round on, players�
attention seems to be mainly attracted by the plot displaying opponents� in-
dividual pro�ts and quantities in the previous round, and, to a minor extent,
from the graph showing the cumulated quantity chosen by the three virtual op-
ponents in all the previous rounds. The attention dedicated by players to their
own past experience remains scarce all over the game, reinforcing our skepticism
about the relevance of the Trial-and-Error learning model.

4.3 Learning

Figure 7 represents the evolution of the average decision time across rounds. The
sharp decrease in the decision time we observe in all treatments, together with
the decrease in the use of the pro�t calculator, suggests that most of the learning
about the market structure takes place during the �rst half of the experiment.

12



Figure 6: Allocation of players�attention along the game.

Once subjects have clearly understood the relation between quantities, prices
and pro�ts, they focus their attention on what the opponents do.
Now the question is: how do subjects use the information on opponents�

behavior they collect? Do they imitate the best among their competitors, as
suggested by Vega-Redondo (1997)�s model, or do they try to optimally respond
to the opponents�past actions? Is any of the three learning models presented in
Section 2.1 able to encompass the observed subjects�behavior? To answer these
questions, we compare the explanatory power of our three learning models.

In a �rst attempt to have a picture of the learning model adopted by the
players in this game, we used hit ratios �a measure proposed by Huck et al.
(1999) �to assess to which extent the three learning rules presented in section
3.2 are able to predict each single choice subjects made.

The hit ratio is de�ned as:

zti =
qti � qt�1i

ati � q
t�1
i

where ati is the quantity predicted, in turn, by Imitate-the-Best (IB), Trial-and-
Error (TE) and Best-Response Dynamics (BR)15 . Clearly, zti = 1 indicates that
the rule perfectly predicted the move taken by the player. In general, zti > 0
implies that the rule has correctly anticipated the direction of the variation in
the quantity produced, while the opposite is true when zti < 0.
Table 3 shows that Best-Response Dynamics is the rule that better �ts the

data, predicting the right direction of change in quantities in at least 70% of
the cases and providing a rather precise forecast (0:5 � zti < 1:5) in at least
19.41% of the observations. Contrary to what observed by Huck et al. (1999),

15zti was set equal to 1 if both the numerator and the denominator were null, it was set
equal to minus the absolute value of the numerator when only the denominator was null.
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Figure 7: Average decision time across rounds, in seconds.

Imitate-the-Best is the rule with the worst performance, since in two treatment
it predicts the wrong direction of change in at least half of the cases.
Table 4 shows how many subjects report positive zti values in at least 70%

of the rounds and how many present hits close enough to 1 (0:5 � z < 1:5) at
least 30% of their decisions. Again, we observe that Best-Response Dynamics
appears to be the only rule that is applied with a certain degree of consistency.
No subjects seem to adopt the Imitate-the-Best rule, while two subjects behave
in accordance with Trial-and-Error rule in the treatment in which this is the
rule that informs the behavior of the automata.

Table 4: Hit ratios at the individual level.

Treatment z > 0 in at least 70%
of the rounds

0:5 � z < 1:5 in at
least 30% of the rounds

N.obs.

Trial-
and-
Error

Imitate-
the-
Best

Best-
Resp.

Trial-
and-
Error

Imitate-
the-
Best

Best-
Resp.

BRD 1 0 5 0 0 1 8
ItheB 1 3 5 0 0 3 7
T&E 2 1 5 2 0 3 8

Since from the analysis presented above it emerges that none of the three
learning rules is able to exactly predict players� choices, we now shift focus
to the direction of the players� output decisions. Following Bosch-Domènech
and Vriend (2003), we consider a model in which the sign of a player�s output
change, �q, is a function of the direction, x, indicated by the target output
levels according to each of the three learning rules. This way, we should be able

15



to determine to what extent each behavioral rule a¤ects the way players adjust
their output in every round of the game.
Let:

�qti =

8><>:
�1 if qti � qt�1i < 0

0 if qti � qt�1i = 0

1 if qti � qt�1i > 0

and, for every learning rule r, let

xtr;i =

8><>:
�1 if atr;i � qt�1i < 0

0 if atr;i � qt�1i = 0

1 if atr;i � qt�1i > 0

where atr;i denotes the quantity predicted for player i at round t by rule r, as
above. In this experiment, we also observe which di¤erent pieces of information
each subject looked at in every single round. These data are assembled into the
model, to see whether and how information a¤ects the way players adapt their
choices as they gain experience during the experiment. Remember that in this
experiment information is hidden behind four boxes on the computer screen.
Denoting with b the box, we then created four dummy variables, dtb;i, indicat-
ing whether in round t subject i opened the box b containing (i) the results
provided by the Pro�t Calculator (ProfCalc), (ii) information about quantities
individually produced by each of the players in the last round and correspond-
ing pro�ts (LastRound), (iii) quantities produced and pro�ts obtained by the
subjects himself in all the previous rounds (HistPl) or (iv) the sum of quantit-
ies produced by the subjects�s three opponents in each of the previous rounds
(HistOpp).
We assume that the value of �qti depends on a latent response variable y.

Then, we estimate an ordered-probit model, where the latent response variable,
y, is a linear function of the independent variables plus a normally distributed
error term, u (for simplicity, here we omit subscripts for round and individual
players):

y =
X
r

�rxr +
X
b

bdb +
X
r

X
b

�b;rdbxr + u

Altogether, the model includes 19 explanatory variables. Data from the three
treatments were pooled, to obtain a su¢ ciently large number of observations.
We �rst estimated the full model, then we progressively obtained a more com-
pact model using Likelihood-Ratio tests with a signi�cance level of 5%. Here
we only present the �nale estimate (Table 5). To take into account possible
e¤ects of unobserved individual characteristics, we include a �xed e¤ect at the
individual level.
Table 5 shows some noticeable results. First, regardless of the informa-

tion observed by subjects, the learning rule based on Best-Response Dynamics
seems to inform their choices to a great extent, which con�rms what already
highlighted in Tables 3 and 4, using hit ratios. Second, this attitude towards
adopting the myopic best response is counteracted by a tendency to imitate the
best performer. Third, the information observed by the subjects signi�cantly
a¤ects the way they behave. In particular, when a subject observes the quant-
ities produced and the pro�ts individually earned by each of her competitors in
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Table 5: Fixed e¤ects ordered probit model

Coe¢ cient Standard Error
�s
TE -0.113 0.094
BR 0.938*** 0.188
IB 0.749*** 0.089

�s
HistPlxTE 0.249** 0.112
HistPlxBR -0.221** 0.104
ProfCalcxBR 0.451*** 0.101
LastRoundxBR -0.521*** 0.178

cut1 -0.479 0.189
cut2 0.440 0.188
N 874
logL -835.568
Wald test �2(29) = 230.430 p-value: 0.0000
Note: symbols ���, �� and � indicate signi�cance at the 1%, 5%
and 10% level, respectively. Standard errors are robust for het-
eroskedasticity.

the previous round, her choices tend to be driven away from what predicted by
the Best-Response rule. Similarly, when subjects look at their own history of
play �in terms of output produced and pro�ts earned �their choices are gen-
erally less consistent with a Best-Response Dynamics, whose predictive power
appears instead to be enhanced when subjects use the pro�t calculator. Fi-
nally, the learning rule based on Trial-and-Error does not �nd strong support in
our data: the coe¢ cient is not signi�cant, and the learning rule seems to drive
subjects behavior only when they speci�cally look at their own past sequence
of choices and payo¤s. As we have seen in Section 4.2, though, this piece of
information is often neglected by subjects.

Summing up, our results on quantities (Section 4.1), information search
patterns (Section 4.2), and learning (Section 4.3) indicate that the hypothesis
that subjects follow some very simple rule to choose their strategy in our game
should be rejected. Learning through Trial-and-Error does not seem to be a
plausible explanation of subjects�behavior, both because players pay too little
attention to their own past pro�ts and quantities, which is the only information
required to apply this learning rule, and because their choices are not in line
with what is theoretically predicted according to this model. On the other hand,
the Imitate-the-Best rule �per se �is not able to forecast the observed choices
correctly, even if subjects� look-up patterns are consistent with this learning
model. Myopic best-response seem to drive players�choices, at least partially.
This conjecture is supported by the information subjects acquire, on average.
To apply this learning rule, subjects need to know the sum of the quantities
produced by their competitors in the last round �an information they almost
always look at � and they must be able to compute a best-response, which
means that either they use the pro�t calculator or they have used it extensively
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in the past and already know their best-response function. Nonetheless, Best-
Response-Dynamics does not fully explain the observed variations in players�
behavior. Results from our ordered probit regression (Table 5) indicate that
players�behavior is driven by the interplay of best-response and imitation. Even
if subject are incline to adopt the best-response when they know the market
structure su¢ ciently well, if they are provided with information about their
rivals�strategies and choices, they are tempted to imitate those who are more
successful, which yields more competitive outcomes.

5 Conclusion

From the data collected in this experiment, it emerges that players�behavior
cannot be encompassed by any of the models of learning we shortly described
in section 3.2, alone. Moreover, our results con�rm that information provided
to subjects has an important e¤ect on the way they behave. We observe that
players tend to best-respond to the action taken by their opponents in the last
round, when they have the necessary information to do so. Still, this is not the
information they are most interested in: they dedicate most of their attention
to the quantities individually chosen by their opponents and the pro�ts each of
them earned in the previous round. This piece of information seems to drive
them away from best-response, and possibly leads them to a more �imitative�
behavior. Even if imitation is not the driving force of subjects� learning � so
the market outcomes we observe are far away from those predicted by Vega-
Redondo (1997) �it still leads to a more aggressive competition than the one
that would emerge if all players adopted a learning model only based on myopic
best-response. Finally, according to our data, it seems that the learning rule
adopted by the opponent � extreme as it was � does not have a very strong
impact on the model of information acquisition and processing adopted by the
players.
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