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Abstract: 

This work aims at developing a two stage strategy which employ information on clustering 

schemes identified by a mapping analysis with the purpose of estimating a club convergence 

model. At the first stage, unobserved TFP differentials across regions are identified by 

introducing a mapping structure in a conditional convergence growth model. Since estimation 

of this class of convergence models in the presence of regional heterogeneity poses both 

identification and collinearity problems, we develop an entropy-based estimation procedure 

which simultaneously takes account of ill-posed and ill-conditioned inference problems. At 

the second step of the analysis, we estimate a two-club spatial convergence model, where 

clubs correspond to subsets of total observations, as identified at the first stage of the analysis 

and spatial dependence is modeled. The two step strategy is applied to assess the existence of 

conditional convergence across Italian regions over the period 1960-1999.  

 

Keywords: club convergence, mapping models, maximum entropy estimation, spatial 
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1. Introduction 

 

Empirical evidence suggests that regions and countries are not homogenous and not 

independent units. Using different statistical methodologies, Durlauf and Johnson (1995), 

Quah (1996), Desdoigts (1999), and Canova (2004), among others, argue that the assumption 

of homogeneity across countries is incorrect. In light of these findings, it is desirable to 

incorporate heterogeneity in growth empirical analysis, by making a further distinction 

between the concepts of absolute and relative location, as suggested by Abreu et al. (2004), 

that can be related to spatial heterogeneity and spatial dependence, respectively. Spatial 

heterogeneity occurs when different patterns of economic development emerge across space. 

In a regression model, spatial heterogeneity can be reflected by non uniform coefficients, i.e. 

structural instability, or by varying error variances across observations, i.e. 

heteroskedasticity
1
. What matters is the location at a particular point in space, which is an 

absolute location concept. The absolute location concept refers to the impact of being located 

at a particular point in space and has been empirically investigated in non spatial 

econometrics literature. Spatial heterogeneity can be linked to the concept of convergence 

clubs. The economy is characterized by the possibility of multiple, locally stable, steady state 

equilibria. A convergence club is a group of economies whose initial conditions are near 

enough to converge toward the same long-term equilibrium. Under such circumstances there 

might be convergence among similar types of economies (club convergence), but little or no 

convergence among clubs. Spatial dependence states that similar values of a random variable 

measured on various locations tend to cluster in space. In this case, the concept of location is 

that of relative location and models of spatial dependence are proposed in the growing spatial 

econometrics literature (Rey and Montouri, 1999; Fischer and Stirbock, 2004; Ertur et al., 

2006; Le Gallo and Dall’Erba, 2006). 

This work aims at developing a two stage strategy to estimate a spatial club convergence 

model, which employs information on clustering schemes identified by a mapping analysis.  

At the first stage, we admit the presence of multiple spatial regimes or “clubs”, whose 

identification is pursued by means of a mapping analysis. The proposed approach draws from 

the choice of a mapping methodology to model the existing unobserved heterogeneity related 

to interregional inequalities in unobservable TFP levels within a conditional growth model 

(Islam, 1995; Caselli et al., 1996). In particular, our approach proceeds by: (i) introducing 

spatial heterogeneity across regions (absolute location effects) at the level of unobserved and 

explanatory variables, and (ii) explicitly producing a location map for unobserved 

components from the growth theory. The multidimensional scaling technique models spatial 

autocorrelation for unobserved variables in a non-parametric way. The use of mapping results 

for potential regimes identification allows for an endogenous selection of regional clusters 

and facilitates the interpretation of the cluster outcomes, providing a measure of the role 

(weight) of different unobserved dimensions. Since in the presence of regional heterogeneity, 

estimation of this class of convergence models poses both identification and collinearity 

problems, we develop a generalized maximum entropy (GME) based estimation procedure 

(Golan et al., 1996), which simultaneously takes account of ill-posed and ill-conditioned 

inference problems.  

                                                 
1
 Spatial heterogeneity in terms of structural instability and group-wise heteroskedasticity has been empirically 

investigated, among others, by Tsionas (2000). The treatment of heterogeneity in panel data analysis has been 

proposed by Lee et al. (1995) and Pesaran and Smith (1995) with Mean Group and Pooled Mean Group 

estimators. 
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At the second step of the analysis, our objective is to incorporate parametrically spatial 

effects or externalities into the spatial regime specification. The growth analysis is extended 

to take account of relative location effects by explicitly modeling spatial dependence within a 

spatial econometrics framework. We specify a multiple club spatial convergence model, with 

clubs corresponding to subsets of total observations, which are identified at the first stage of 

the analysis. The proposed strategy is applied to assess the existence of club convergence 

across Italian regions over the period 1960-1999. 

The paper is organized as follows. Section 2 presents convergence concepts, and related 

issues connected to spatial heterogeneity and spatial dependence. Section 3 introduces the 

approach used to identify convergence clusters by a mapping structure. A generalized 

maximum entropy estimation procedure is also developed and discussed in section 3.2. 

Section 4 introduces alternative two-club spatial convergence model specifications. Data 

description and results of an application to Italian regional data are reported in section 5. 

Finally, section 6 concludes and lists some potential advantages and investigations of the 

proposed approach. 

 

 

2. Club convergence analysis 
 

The existence of a negative relationship between the initial GDP per capita/per worker and 

subsequent growth is a phenomenon, called β-convergence
2
, largely documented in the 

empirical literature with reference to both cross-country and cross-region analysis. If 

convergence derives by physical and human capital accumulation, initial capital-poor regions 

have higher marginal productivity of capital, hence faster growth than rich regions. This view 

is grounded by the Solow (1956) neoclassical model and its extended version by Mankiw, 

Romer and Weil (1992) or by endogenous growth models that display transitional dynamics, 

such as the two-sector growth models of Lucas (1988)
3
. The convergence issue has been 

extensively debated in the growth and regional science literature, giving rise, from a 

theoretical point of view, to different concepts, such as absolute and conditional β-

convergence, and club convergence. We briefly outline the former two concepts and then 

concentrate on the latter definition since our focus is on the analysis of heterogeneous 

countries/regions. 

If we assume that all the economies are structurally similar, characterized by the same steady 

state, and differ only by their initial conditions, we define the concept known as absolute (or 

unconditional) β-convergence. It is only in this case that poor countries grow faster than rich 

ones and eventually catch them up in the long run. If we assume that the growth rate of an 

economy is positively related to the distance that separates it from its own steady state, we 

consider the concept known as conditional β-convergence. If economies have different steady 

states, this concept is compatible with a persistent high degree of inequality among 

economies
4
.  

To account for the presence of relative location effects, spatial externalities are introduced in 

growth models yielding convergence equations with spatial autocorrelation. These theoretical 

models have been derived by Lopez-Bazo et al. (2004), Vaya et al. (2004), Ertur and Koch 

(2006).  

When the neoclassical growth model is augmented so as to capture additional (empirically 

significant) elements such as human capital, income distribution, capital market 

                                                 
2
 For a complete survey see, for example, Barro and Sala-i-Martin (2004). 

3
 However, the fact that poor countries grow faster than rich countries may be also (or only) the effect produced 

by a process of technological diffusion (Abramovitz, 1986; Barro and Sala-i-Martin, 1997). 
4
 See Islam (2003) for a detailed survey. 
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imperfections, externalities, and imperfectly market structures, club convergence emerges 

under plausible scenarios (Galor, 1996). More specifically, in the presence of factors related 

to the concept of absolute location, if heterogeneity is permitted across individuals, the 

dynamical system of the Solow model may be characterized by multiple, locally stable, 

steady-state equilibria. An economy will be reaching one of these different equilibria 

depending on the range to which its initial conditions belong. The set of variables whose 

initial levels are relevant depends on the theoretical models considered (Galor, 1996)
5
. 

In such a framework, club convergence means that economies, similar in their structural 

characteristics, converge to one another if their initial conditions guarantee the attraction to 

the same steady state equilibrium. When convergence clubs exist, one (conditional) 

convergence equation should be estimated per club, corresponding to different regimes. If for 

simplicity we have two different regimes, A and B, we consider the following system: 
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There is club convergence when βA and βB are significantly negative
6
. The vector Xit-1 = (skit-

1, shit-1, ndxit-1) gives the determinants of the steady state output and consists of a set of 

region-specific explanatory variables suggested by the theory, including skit-1 the investment 

rate in physical capital, and ndxit-1 the sum of the population growth rate, the exogenous 

technological growth rate, and the depreciation rate. In addition, we also consider shit-1, the 

investment rate in human capital measured by the enrollment ratio at the secondary school. 

Time effects control for the presence of a time trend component and of a common stochastic 

trend (the common component of technology). Individual effects capture total factor 

productivity (TFP) differences and other omitted variables. 

 

3. Step I  –  Procedure: identification of convergence clubs by a mapping structure 

 

Several approaches have been performed to evaluate the composition of convergence clubs in 

models of economic growth, since economic theory does not provide guidance as to (i) the 

number of groups of regional economies that interact more with each other with those 

outside; and (ii) the way in which the explanatory variables defining the initial conditions 

determines clubs. 

Exogenous and endogenous techniques have been proposed with the aim of determining 

those clubs. The former class of exogenous procedures comprises: (i) a priori criteria, like the 

belonging to a geographic zone or some per capita GDP cut-offs or exogenous core periphery 

division; and (ii) an exploratory spatial data analysis (ESDA), based on several measures of 

global and local spatial autocorrelation of the explanatory variables as per capita GDP, 

human and physical capital  measures (Basile et al., 2003).  

                                                 
5
 Heterogeneity across economies is essential in creating ambiguity between club convergence and conditional 

convergence (Galor, 1996), that is to say that evidence of conditional β-convergence may be interpreted as 

evidence of club convergence as well. The importance of initial conditions within the convergence club 

hypothesis may be mined in the presence of international capital mobility. However, human capital is not 

perfectly mobile across countries, so club convergence remains a plausible hypothesis. However, in the presence 

of technological progress, conditional convergence may be observed in the long run, preceded by polarization 

and clustering in the medium run (Galor and Tsiddon, 1997). In this case, we observe a non monotonic evolution 

of the distribution of income across countries, and clustering schemes are to be interpreted as transitory 

phenomena. For a unified review of theories examining the process of development through different stages, see 

Galor (2005). 
6
 The system (3) describing the convergence process can be generalized to the case of a number C > 2 of clubs. 
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The latter ones enclose all the statistical techniques that endogenously determine clubs of 

regions on the basis of a number of conditioning variables which reflect initial conditions, 

structural characteristics, economic activity and other effects associated with physical and 

human capital stocks. When multiple control variables are used it is possible to identify the 

variable that dominates as an element useful in identifying multiple regimes. Within the 

endogenous approaches, several techniques have been developed, as the regression tree 

method (Durlauf and Johnson, 1995), projection pursuit technique (Desdoigts, 1999) or 

techniques based on polynomial functions (Durlauf et al., 2001) or based on multivariate test 

for stationary (Corrado et al., 2005),  

 

3.1. The mapping model 

Our idea is to analyze spatial association within all observed explanatory variables, which 

define the initial conditions, by means of a mapping representation. The approach aims at 

investigating regional spatial heterogeneity by also capturing the contribution of omitted 

variables such as the unobserved quality of institutions, and the determinants of regional 

technological and structural characteristics. In addition, this type of information on initial 

conditions is recovered in an endogenous way, without any ex ante (and somewhat 

subjective) selection. 

The method draws from the choice of a mapping methodology to model the existing 

unobserved heterogeneity related to interregional inequalities in unobservable TFP levels and 

proceeds by: (i) introducing spatial heterogeneity at the level of the unobserved variables, and 

(ii) explicitly producing a location map for unobserved components from the growth theory. 

The use of mapping results for potential regimes identification allows for an endogenous 

selection of regional clusters and facilitates the interpretation of the cluster outcomes, 

providing a measure of the role (weight) of different unobserved dimensions.  

More specifically, the individual-effect term in the standard conditional growth model 

specification is estimated and used to define the spatial position of a region’s TFP level in 

terms of different unobserved dimensions weighted by the variables’ features. The variability 

in both cross-region specific unobserved characteristics and time invariant components is 

considered and, as in the choice map, the position of the unobserved variables on the M-

dimensional map and the country’s importance weights for these dimensions are derived. In 

this framework, the interpretation of the dimensions of maps is aimed at endogenously 

identifying the determinants of technological and structural differences. The resulting 

location map can be obtained by using a two-stage process. First, the parameters of the 

growth model (eq. 1) are estimated and the covariance matrix of unobserved components 

iµ ’s is computed. Then this matrix is used as an input in multidimensional scaling to obtain 

their locations in a multi-attribute space. As in the choice map representation we assume that 

the time-invariant effect for region i, iµ , is a linear function of the region’s time invariant 

attributes which lie within a two-dimension map, such as: 

 

1 1 2 2i i i i
w z w zµ ξ= + +                                                                               (2) 

 

where the parameters w1 and w2 are modeled as a function of country’s characteristics, (z1i, 

z2i) are the coordinates representing the location (to be estimated) of the unobserved effect on 

the map, and ξi is a random error with zero mean. 

It should be noted that this approach presents the advantage over the more traditional 

approaches to simultaneously identify the main spatial factors that provide an indirect 

measure of unknown invariant TFP (dis)similarities across regions, without imposing an a 

priori spatial structure on the growth model. 
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3.2.  A Maximum Entropy-based estimation approach 

In the presence of regional heterogeneity, estimation of convergence models poses both 

identification and collinearity problems. In this phase of the analysis we then proceed by 

developing a generalized maximum entropy (GME) based estimation procedure (Golan et al., 

1996) which simultaneously takes account of ill-posed and ill-conditioned inference 

problems. Our approach retains the flexibility of the SUR approach in allowing for correlated 

shocks across regions and can be implemented (i) when the number of time periods, T, is not 

sufficiently large, (ii) when the number of regions N is lower than the number of time 

periods, T, and/or (iii) in presence of small samples. 

The entropy-based estimation procedure shares some of the characteristics of Stein Rule 

estimators and Bayesian approaches to estimation (see Judge et al., 1988 and Zellner, 1997). 

There is now a considerable body of work, which has given an application of the entropy 

criterion to a wide class of models (Golan et al. 1996, 1997). As regards traditional 

estimation techniques, the formulation of the constrained maximization problem in the 

maximum entropy view does not require: (i) the use of restrictive parametric assumptions on 

the model; (ii) the formulation of hypotheses regarding the form of the distribution of the 

objective variables. Restrictions expressed in terms of inequality can be introduced and it is 

possible to calibrate the precision in the estimation. Good results are produced in the case of 

small-sized samples, in the presence of high numbers of explanatory parameters and variables 

(highly correlated).  

We start by considering the maximum entropy formulation relative to a seemingly unrelated 

system of N equations which allows for covariance between the disturbances across different 

regions where the i-th model (equation) is given by: 

 

iiii XY εβ +=                                                                                                                           (3) 

 

for i=1,..,N, where Yi and εi are of dimension (T×1), Xi is (T×Ki) and βi is (Ki×1). Here Yi= 

lnYi and Xi  includes ski, shi, ndxi and lnyi,t-1.  

Stacking all the equations, the system approach considers the N equations, of the form (3) for 

each region as: 
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where Y and ε are each of dimension (NT×1), X is a block diagonal matrix of dimension 

(NT×K) with K = Σ Ki and β = (β1, β2,.. βN)’ is an unknown vector of dimension (NK×1).  
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Under the GME framework we recover simultaneously the unknown parameters β, the 

unknown errors by defining an inverse problem, which is based only on indirect, partial or 

incomplete information. We also assume that the equation error are contemporaneously 

correlated, but uncorrelated over time. Consequently, the covariance matrix for ε  may be 

written as: 

 

TI⊗Σ=Φ                                                                                                                               (5) 

 

where Σ is an (N×N) positive definite symmetric matrix, ⊗ is the Kronecker product operator 

and IT is an identity matrix of dimension T. 

In the GME estimation the objective is to recover the probability distributions for unknown 

parameters and errors. Each parameter is treated as a discrete random variable with a compact 

support and M possible outcomes, 2 ≤ M ≤ ∞. The uncertainty about the outcome of the error 

process is represented by treating each error as a finite and discrete random variable with J 

possible outcomes,   2 ≤ J ≤ ∞. To this end, we start by choosing a set of discrete points, the 

support space v = [v1,v2,…,vM]' of dimension M ≥ 2, that are at uniform intervals and 

symmetric around zero. Each error term has corresponding unknown weights wj = 

[wj1,wj2…,wjM]' that have the properties of probabilities 0 ≤ wjm ≤ 1 and ∑m wjm = 1.  

Re-parameterizing the set of equations (4), so that β = Zp  and ε = Vw,  yields: 
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where p = (p1, p2, .., pK)’and w = (w1, w2, .., wN)’ are the unknown signal and noise 

probabilities we wish to recover; Z and V are the corresponding parameter supports for β and 

ε as previously defined.  

Given the data consistency (6) and the covariance’s relationship (5) the GME objective 

function relative to our formulation problem may be formulated as: 
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where p = (p1, p2, .., pK)’and w = (w1, w2, .., wN)’.  

The solution to the system of equations related to the first-order conditions produce the 

following point estimates:  

1 1

1, .., 1, .., . .
M J

k km m i ij i

m j

p z k K w v i Nβ ε
= =

= = = =∑ ∑
) )) )                                            (9) 

To allow the possibility of non-zero covariances for errors it is possible to specify, within the 

GME formulation, an additional set of restrictions which is based on a particular error 

covariance structure and incorporates the known a priori information of contemporaneous 
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correlations among the disturbance terms in the equations of the system (Bernardini Papalia, 

2002). 

For the empirical analysis on regional convergence three points of interest should be noted 

here. First, the system estimation approach facilitates testing of hypotheses involving cross 

equation restrictions such as testing the equality of total factor productivities in two 

neighboring regions. Second, by using the GME procedure it is possible to derive an 

estimator even if the number of regions involved, N, is more than the number of time periods, 

T, and the corresponding variance-covariance matrix for errors is singular. Third, estimates 

are computed without imposing strong distributional assumptions. 

 

 

4. Step II - Procedure: specification of the spatial multiple regimes model 

 

The second step of our approach is focused on the specification of a spatial multiple regimes 

model in which the sample is divided into groups identified by the first step results and the 

spatial dependence is incorporated into the model. 

In spatial process models, one proceeds by specifying the spatial process and by choosing an 

appropriate spatial weights matrix that must not contain any of the exogenous or endogenous 

variables used in the growth regression. 

Let us consider two clubs only, indicated by the indices A and B. Clubs correspond to 

subsets of regions identified by means of the mapping analysis. Each club may be 

represented by a cross-sectional equation. By considering the system of two equations, one 

for each regime, A and B, the two-club growth regression model can formally be represented 

as: 

0

0

A A A A

B B B B

Y X

Y X

β ε

β ε

       
= +       

       
                                                                                     (10) 

where YA and YB are the dependent variables; XA and XB include the explanatory variables, 

βA and βB are the coefficients, and εA and εB are the errors in the respective clubs A and B of 

regions. Let NA and NB  denote the number of regions in club A and club B, respectively, so 

that N = NA+ NB. Here YA and YB are (NAT×1) and (NBT×1) vectors of observations on the 

dependent variable (per capita GDP growth rate) for the NA and NB regions and t = 1, ..,T 

time periods, respectively. X is a set of explanatory variables suggested by the theory, 

comprising, the lag of per capita GDP level, the investment rate in physical capital and in 

human capital, the sum of the population growth rate, the exogenous technological growth 

rate, and the depreciation rate. 

The single block structure of the two-club model (10) expressed by a single equation results: 
* * * *Y X β ε= +                                                                                                                       (11) 

where the variables without subscript refer to combined variables, coefficients and error 

matrices. 

The model with a constant error variance over the whole set of observations:  
2

N
IσΦ =                                                                                                                         (12) 

refers to the classical two-club convergence model that we indicate with M0 model. 

The two-club convergence model with groupwise heteroskedasticity (M1) assumes an error 

variance that is different in each of the clubs of regions:  
2

2

0

0

A A

B B

I

I

σ

σ

 
Φ =  

 
                                                                                                            (13) 

where σ 2

A
 and σ 2

B
 denote club-specific constant error variances, IA and IB are identity 

matrices of dimensions NA and NB. 
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In both model specifications, a spatial error dependence (spatial autocorrelation) can 

represent a problem in the situation where the error term at each region is correlated with 

values of the error term at other regions. In these cases, the above two-club convergence 

models are misspecified and it is necessary to specify a spatial process for the disturbance 

terms ε*. 

The most common specification is a spatial autoregressive process in the error terms ε*, 

Spatial Error Model (SEM), which leaves unchanged the systematic component and models 

the error term by assuming (Anselin-Bera, 1998): 
* * *ε λωε µ= +                                                                                                                        (14) 

Where ω  is the spatial weights matrix of dimension NT by NT, λ is a scalar spatial 

autoregressive coefficient for the spatial error ε*, and *µ  is a (NT×1) vector of iid errors with 

variance σ *

2

µ
. 

This  specification allows the convergence process to be different across regimes and in the 

same time it deals with spatially autocorrelated errors. However, spatial effects are assumed 

to be identical within each club, but all the regions are still interacting spatially through the 

spatial weight matrix W. Note that model M1 assumes that spatial effects are identical also 

across spatial clubs
7
.  

In this case, it is observed how a random shock in a region affects growth rates in that region 

and additionally impacts all the other regions through the spatial transformation by 

recognizing the presence of global externalities associated solely with random shocks. 

Depending on the structure of the error variance in club A and club B, we can specify 

different two-club spatial error convergence models. 

Assuming a constant spatial structure for error variance in clubs A and B we have (M
0

SEM  

model): 

*

* * 2'
N

E I
µ

µ µ σ  =   

and the overall variance-covariance matrix takes the form: 

( )*

12 'A A
µ

σ
−

Φ = ,                                                                                                             (15) 

where: 

 ( )* 1 *, .NA A Iε µ λω−= = −                                                                                               (16) 

Assuming that the two clubs have different error variances 

( )* *

* 2 * 2var var
A B

A Bµ µ
µ σ µ σ   = ≠ =     then (M

1
SEM model): 
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σ
µ µ

σ

 
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.                                                                                     (17) 

The spatial weights matrix W is a N by N positive and symmetric matrix which expresses for 

each observation (row) those regions (columns) that belong to its neighborhood set as non-

zero elements, that is: for pairs of locations (i, j), wij ≠0 for ‘neighbors’ and wij =0 for others. 

It is common practice in the empirical growth studies to derive spatial weights from the 

location and spatial arrangements of observation by means of a geographic information 

system. In this case, regions are defined ‘neighbors’ when they are within a given distance of 

each other, i.e. wij =1 for d ij ≤ δ and i≠j, where dij is the great circle distance between the 

capital cities of region i and j, and δ is a critical cut-off value (distance-based contiguity), 

above which all interactions are assumed to be negligible.  

                                                 
7
 However, it is also possible to investigate the potential for differentiated spatial effects in modeling 

convergence, that is, a different λ coefficient for each regime. 
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More specifically, a spatial weights matrix W* is defined as follow: 

*

if

if

if

0

1 ,

0 ,

ij ij

ij

i j

w d i j

d i j

δ

δ

 =


= ≤ ≠
 > ≠

.                                                                                                 (18) 

The elements of the row-standardized spatial weights matrix W (with elements of a row sum 

to one) result: 
*

*

1

, , 1,.., .
ij

ij N

ij

j

w
w i j N

w
=

= =

∑
                                                                                                  (19) 

An alternative way to incorporate the spatial effects on growth and convergence is through 

spatial autoregressive models (SAR), where a spatial lag of the dependent variable is included 

on the right hand side of the model. If W is a row-standardized matrix of spatial weights 

describing the structure and intensity of spatial effects, equation (11) is re-specified as follow: 

 

),,0(*** 2
INuuWYXY uσργ ∼++=                                                                               (20)  

 

where ρ is the parameter associated to the spatially lagged dependent variable WY that 

captures the spatial interaction effect indicating the degree to which the growth rate of per-

capita GDP in one region is determined by the growth rates of its neighboring regions, after 

conditioning on the effect of X. The error term is assumed normally distributed and 

independently of X and WY, under the assumption that all spatial dependence effects are 

captured by the lagged term. In this case, it is observed how the performance of the 

dependent variable impacts all the other (neighbor) regions through the spatial 

transformation by recognizing the presence of global spillovers associated to GDP growth 

rates. 

Finally, two other models are described only for completeness reasons. Another way to deal 

with spatial dependence is to introduce a set of exogenous spatial lag variables B that can 

include or not the lag of initial income per capita (spatial cross-regressive model, SCRM). 

This approach has the advantage of confining the spatial effects to selected explanatory 

variables and maintaining a strong link to theory. The SCRM formulation is a model which 

is local in scope. 

  

),,0(***** 2

*INuuWBXY uσργ ∼++=                                                                          (21)  

 

In this case, the model gives estimates of both a direct and a spatially lagged effects of initial 

per capita GDP levels on the growth rates, besides estimates of spatially lagged effects of 

other explanatory variables. Another model, which is also local in scope, is the spatial 

moving average model (SMAM), where the error term for each region i is a function of a 

random error term for i, and the average of the error term for the neighbors of i: 

 

,*** ξξτγ +=+= WeeXY                                                                                               (22)  

 

whereτ is the spatial moving average parameter. 

 

 

5.   Application: club convergence across Italian regions 
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The procedure developed in previous sections is employed in order to analyze conditional 

club convergence across Italian regions. The analysis is based on CRENOS data set covering 

the period 1960-1999 (details are reported in Appendix). Per capita GDP and other economic 

aggregates at constant 1995 prices are used. Real per capita GDP is calculated as a ratio of 

real GDP and population, the saving rate in physical capital is given by the ratio of total 

investment and GDP, and the investment rate in human capital is the ratio of enrollment in 

secondary school and population of age 14-19. Moreover, we add to the population growth 

rate, a constant value of 0.05 to take account of the exogenous technological growth rate and 

the depreciation rate. The district variable is a measure of the local degree of industrial 

district diffusion over the Italian regions; specifically, we consider the relative number of 

district identified by ISTAT in a region over the total number of Italian districts in 1991. All 

final data are expressed in logs and are calculated as 5-year averages to eliminate the business 

cycle component
8
. 

 

5.1 Step 1 - results 

In the analysis of convergence across Italian regions a mapping analysis is implemented with 

the aim of identifying multiple regimes. Following the step I procedure, presented in section 

3.1, we model the relationship which describes the evolution of regional per-capita GDP 

through a system of seemingly unrelated regression equations (SUR) with reference to the 

dynamic model (1)
 9

. In order to overcome problems connected to collinearity of regressors 

and to the singularity of the error covariance matrix, a generalized maximum entropy 

approach, developed in section 3.2, is used. 

Results obtained with the generalized maximum entropy (GME) approach are summarized for 

all regions in table 1. We consider the vector Xit-1 = (skit-1, shit-1, ndxit-1, district) to determine 

the steady state output, which consists of a set of region-specific explanatory variables 

suggested by the theory, including skit-1 the saving rate in physical capital, ndxit-1 the sum of 

the population growth rate, the exogenous technological growth rate, and the depreciation 

rate. In addition, we also consider shit-1, the investment rate in human capital, by following the 

extended version by Mankiw, Romer and Weil (1992) and district, the district variable used 

as a proxy of the local degree of industrial district diffusion over the Italian regions.    

With reference to the mapping analysis, we find geographic localisation to have a prevailing 

role after taking account of differences in human capital and of the uneven distribution of 

economic activities (see figure 1). Maps show two separated groups of regions, located in the 

North-Center and South of Italy with a bi-modal distribution of real per capita GDP (sigma 

convergence)
10

. Besides the result of two different regimes, we also observe that convergence 

clubs are spatially concentrated. Our mapping analysis contributes to the identification of  two 

regimes in accordance with other studies focusing on Italian regions (Mauro and Podrecca, 

1994; Cellini and Scorcu, 1995). For details on regional groupings see Table 2. 

It is interesting to highlight that the dimensions of the map indicate groups of regions with 

‘homogeneous’ rates of convergence. Such evidence related to the estimated regional rates of 

convergence indicates some empirically significant differences across groups of regions, and 

                                                 
8
 Other studies have taken averages over 5-year periods, like Islam (1995) and Caselli et al. (1996) among 

others. 
9
 In SUR specification complete heterogeneity across regions is assumed and (1+λ) and γ in eq. (1) become 

(1+λ)i and γ i, respectively. 
10

 The first dimension, the vertical axe in figure 1, can be interpreted as a separation between the Northern-

Central and Southern regions, apart for Lazio. The second dimension (see below the horizontal axe in figure 1) 

contributes to isolate the regions that present some anomalies (Sicilia, Basilicata, Val D’Aosta, and Lazio), 

showing the relevance of the geographical location of a region as a source of (dis)advances in a context where 

economic activity is not homogenously distributed in space, but is concentrated in some areas. 
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the richest regions of Northern Italy attain the lowest growth convergence rates, while 

Southern regions experience the highest speeds of convergence (see table 1).  

 

5.2 Step II - results  

Having identified two different sub-groups of Italian regions, our objective is now the 

estimation of a system of two convergence equations, one for each regime. In addition, the 

presence of some residual spatial correlation is tested. We estimate the two-club growth 

regression model (12) by assuming a model specification in terms of per capita GDP growth 

rate (equation 2) for each regime. Again, as in section 5.1, Xi  is a set of explanatory variables, 

comprising ln yit-1 the lag of per capita GDP level, skit-1 the saving rate in physical capital, shit-

1 the investment rate in human capital, ndxit-1 the sum of the population growth rate, the 

exogenous technological growth rate, and the depreciation rate. 

As a preliminary analysis  to detect spatial correlation within regimes we have estimated a 

system of seemingly unrelated (SUR) equations (system 3a) without spatial effects, for the 

period 1960-1999. OLS estimates of the non spatial model shows significant coefficients of 

the lagged income (ly) and also supports the hypothesis of conditional convergence within 

each regime. This finding seems to favor the two-club convergence model rather than a single 

steady-state conditional convergence model
11

.  

In addition, by splitting the sample into four groups with a time span of ten years, ‘60s, ‘70s, 

‘80s, ‘90s, we obtain diversified results
12

. More specifically, estimated rates of convergence 

are always different between regime A and B for all sub-periods. In the ‘60s, for regime B, 

the coefficient for ly is negative, supporting the hypothesis of conditional convergence, but it 

is not significant for regime A. In the ‘70s and ‘80s, the same coefficient is not significant for 

regimes A and B so this finding does not provide support for the hypothesis of conditional 

convergence, while in the 90s the coefficient for of the lagged income is negative and 

significant for regime A, and not significant for regime B
13

. Provided that the relative short 

time span may contribute to weaken our findings and previous evidence based on Italian data 

(Paci and Pigliaru, 1995; Cellini and Scorcu, 1995; Arbia et al., 2003) points in favor of a 

structural break at the beginning of the ‘70s, we focus our analysis on the period 1970-1999 

and maximum likelihood estimates of the spatial model, as a system of two seemingly 

unrelated equations, are computed. Diagnostic tests for the presence of spatial effects are 

performed in the conditional convergence model (system 1). Test results suggest the presence 

of a significant level of spatial dependence among regions
14

.  

Both spatial error and spatial lag models are then estimated by assuming that spatial effects 

are identical across spatial regimes. The weight matrix is computed by means of the distance 

between the capital cities, where the critical cut-off value is given by the first quartile (such 

results are robust to some other definitions of the limit value, e.g. median). Results relative to 

the spatial error model are summarized in table 3. In table 4, analogous results are reported for 

                                                 
11

 A Moran's I test and two Lagrange multipliers tests (Lagrange multiplier, and robust Lagrange multiplier) are 

performed. The Moran’s I test is very powerful against both forms of spatial dependence. We find a value the 

Moran statistic of 2.133 (p-value 0.033). A clear evidence of spatial dependence comes from the robust Lagrange 

multiplier test  (LM test=0.397/p-value=0.529 for error autocorrelation; LM test=8.494/p-value=0.004 for spatial 

lag). 
12

 Tests for heteroskedasticity of errors (Breusch-Pagan and robust White test) are not significant, with reference 

to the whole sample (1960-1999) and for sub-periods (‘60s, ‘70s, ‘80s, and ‘90s). 
13

 Detailed results for the whole sample (1960-1999) and for sub-periods (‘60s, ‘70s, ‘80s, and ‘90s) are 

available upon request. 
14

 A Moran's I test and two Lagrange multipliers tests (Lagrange multiplier, and robust Lagrange multiplier) are 

performed. The Moran’s I test is very powerful against both forms of spatial dependence. We find a value the 

Moran statistic of 1.556 (p-value 0.12). A clear evidence of spatial dependence comes from the robust Lagrange 

multiplier test  (LM test=3.341/p-value=0.068 for error autocorrelation; LM test=4.846/p-value=0.028 for spatial 

lag). 
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the spatial lag model. For the period 1970-99, some differences emerge by comparing 

estimates of error and lag models. In both specifications, we obtain different coefficients of 

the lagged per capita income for regime A and B, which yield convergence only for regime A 

(1.1%, for SEM model; 1.2% for SAR model)
15

. 

Moreover, the convergence across regime A regions in the 1970-99 period is concentrated in 

the last decade, given that the 70s and ‘80s exhibit lack of convergence (table 5). For regime 

B, the lack of convergence during the period 1970-99, if analyzed in its evolution over time, 

seems to indicate that Italian regions included in that regime tend to diverge (table 5). 

With reference to other explanatory variables, for the period 1970-99 we observe that the 

effect of population growth rate (lndx) is negative and significant only in regime A.  

However, the other regressors, namely the investment in physical capital (lsk) and in human 

capital (lsh), have not significant effects on growth
16

. We also report the results relative to the 

spatial coefficients ( ρλ ˆ,ˆ ) in tables 3 and 4 that, by assumption, are equal for both regimes. 

Estimates of λ and ρ  show positive values for the whole period 1970-99. Only for the spatial 

lag model we find a significant coefficient. Spatial effects are also checked in sub-periods 

analyses (table 5). Estimates of the spatial coefficients λ and ρ  in all cases are not 

significant.  

 

6. Remarks and conclusions 

 

In this work a two step procedure has been developed with the aims of (i) identifying potential 

multiple regimes and economies whose growth behavior obeys a common statistical model, 

and (ii) estimating a spatial convergence club models that incorporates also spatial 

dependence among regions. Regime identification has been endogenously performed, by 

means of a mapping analysis. More specifically, by introducing a set of control variables in a 

conditional convergence growth model, TFP differentials across regions have been identified 

and used to determine multiple regimes. In this first phase of the analysis, an entropy-based 

estimation procedure has also been proposed in order to overcome problems of endogeneity 

and collinearity. In the second step of the procedure, a theoretically more satisfactory 

approach that directly incorporates spatial effects or externalities connected to relative 

location into the multiple regime model has been suggested. 

With respect to the estimation procedure proposed in step-I, several advantages can be 

pointed out. The maximum entropy-based estimator is more efficient than traditional 

estimators, in particular when data constraints are included in the maximum entropy-based 

problem formulations. This procedure is able to produce estimates in models where the 

number of parameters exceeds the number of data points and in models characterized by a 

non-scalar identity covariance matrix. Prior information can be introduced by adding suitable 

constraints in the formulation without imposing strong distributional assumptions.  

With respect to the mapping analysis which has been proposed as a suitable method to 

identify regimes, it is  important to emphasize some points. First, it is possible to identify 

groupings of regional economies that are converging at different speed. Second, the number 

                                                 
15

 Analogous results are obtained without controlling for spatial autocorrelation. The rate of convergence is 

0.0122 for Regime A, and 0.007 for Regime B and the hypothesis of a null rate cannot be rejected only for the 

latter one. 
16

 The result related to human capital is standard in the literature on Italian regional growth, with the exception 

of Mauro (2002) who finds a positive value when controlling for unemployment. The impact of physical 

investment is consistent with previous empirical contributions (Mauro and Podrecca, 1994; Paci and Pigliaru, 

1995; Cellini and Scorcu, 1997; Carmeci and Mauro, 2002). Carmeci and Mauro (2004) show that this finding 

has to be imputed to an untested constraint of homogeneity of private and public output-capital elasticity. 

Admitting heterogeneity, private investment has a positive effect, and public investment has not. 
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of clubs and the composition of groups of regions in each regime are endogenously recovered 

by means of map’ dimensions, which depend on observed and unobserved effects relative to 

initial conditions, respectively. 

The two-step approach has been employed to assess the existence of conditional convergence 

across Italian regions over 1960-1999 period. Remarkable differences in TFP levels have 

been detected, even when differences in human capital investment rates and in the intensity of 

economic activities have been considered. In synthesis, our results strongly support the 

presence of TFP heterogeneity across Italian regions. The key role of both technology 

spillovers through human capital accumulation and agglomeration economies within 

industrial districts as the relevant determinants of TFP differences has been confirmed by our 

results. More specifically, results relative to the first step of the analysis have suggested some 

kind of heterogeneity across Italian regions: the convergence process if it exists, could be 

different across regimes and these clubs are also spatially concentrated. With reference to the 

second step procedure, both the two-club spatial error model and the two-club spatial 

autoregressive model have been implemented as suggested by the appropriate diagnostics, 

which have shown the presence of spatial dependence. Our analysis, while confirming the 

convergence club hypothesis across Italian regions over 1970-1999 period, has shown that 

global externalities are not associated with random shocks, but neighbors’ growth rates tend 

to positively influence the economic performance of a region.  

One important extension of our work is to investigate the potential for differentiated spatial 

effects in modeling club convergence by assuming that spatial effects are not identical across 

spatial regimes. 
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APPENDIX: Description of data 

 

Table A: Description of CRENOS 1960-2000 data set 

(monetary values at 1995 constant prices) 

 

Description of variables 

Gross Domestic Product at market prices Monetary values in  millions of Euro 

Gross fixed investment Monetary values in  millions of Euro 

Population Demographic variables in thousand of units 

Enrollment in secondary school Demographic variables in thousand of units 

Population of age 14-19 Demographic variables in thousand of units 

 

Table B: Time intervals – 5-year averages 

 
 

Time Interval 

1975 1970-1974 

1980 1975-1979 

1985 1980-1984 

1990 1985-1989 

1995 1990-1994 

2000 1995-1999 

2001 2000-2001 

 

 

Table C: Description of regressors 

(variables are in logs) 

 
ly   lagged per capita GDP  

lsk   lagged investment in physical capital 

lsh   lagged investment in human capital 

lndx   lagged population growth rate + 0.05 

district   ratio of the number of districts in a region over the number of districts in Italy 
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Tables and Figures 
 

Table 1.  Results of Step I - Procedure: Max Entropy estimates   

Dependent variable: (log of) per capita GDP level at time t 

 

Region ly lsk lsh lndx district Rate of conv. 

C1 0.62 -0.0004 0.004 -0.002 -0.0003 0.0951 

C2 0.53 -0.0003 0.008 -0.002 -0.0005 0.1264 

C3 0.63 -0.0007 0.005 -0.002 -0.0002 0.0925 

C4 0.68 -0.0002 0.006 -0.001 -0.0003 0.0760 

C5 0.62 -0.0005 0.005 -0.001 -0.0002 0.0944 

C6 0.63 -0.0004 0.004 -0.001 -0.0004 0.0921 

C7 0.62 -0.0009 0.003 -0.002 -0.0004 0.0955 

C8 0.64 -0.0004 0.003 -0.001 -0.0002 0.0882 

C9 0.61 -0.0005 0.0002 -0.001 -0.0002 0.0991 

C10 0.63 -0.0007 0.003 -0.0005 0.003 0.0919 

C11 0.63 -0.0004 0.003 -0.001 -0.0003 0.0916 

C12 0.12 -0.001 0.007 -0.005 -0.001 0.4193 

C13 0.66 -0.0005 0.003 -0.0003 -0.0002 0.0829 

C14 0.62 0.0001 0.003 0.0001 -0.0003 0.0949 

C15 0.58 -0.0006 0.004 -0.001 -0.0002 0.1087 

C16 0.62 -0.0005 0.003 -0.001 -0.0005 0.0956 

C17 0.48 -0.001 0.009 -0.0002 -0.0005 0.1459 

C18 0.56 -0.0002 -0.014 -0.001 -0.0002 0.1151 

C19 0.52 -0.0005 0.005 -0.001 -0.0004 0.1293 

C20 0.61 -0.0006 0.004 -0.001 -0.0004 0.0972 

Average 0.58 -0.0005 0.003 -0.001 -0.0002 0.1081 

 

Explanatory variables: ly, lsk, lsh, lndx, and district are lagged per capita GDP level, lagged investment rates in 

physical and human capital, lagged sum of population growth rate and 0.05, and district intensity, respectively. 

Regions: C1: Piemonte, C2 : Val d’Aosta, C3: Lombardia, C4: Trentino Alto Adige, C5: Veneto, C6: Friuli 

Venezia Giulia, C7: Liguria, C8: Emilia Romagna, C9: Toscana, C10: Umbria, C11: Marche, C12: Lazio, C13: 

Abruzzo, C14: Molise, C15: Campania, C16: Puglia, C17 Basilicata, C18: Calabria, C19: Sicilia, C20: Sardegna 
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Figure 1. Two-dimensional MDS solution (GME estimates) 
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Table 2. Description of Italian regions (regional code in brackets) 

 

Regimes 

 

Regions 

 

REGIME A 

PIEMONTE (C1) VAL D'AOSTA (C2) LOMBARDIA (C3) 

TRENTINO ALTO ADIGE (C4) VENETO (C5) FRIULI 

VENEZIA GIULIA (C6) LIGURIA (C7) EMILIA 

ROMAGNA (C8) TOSCANA (C9) UMBRIA (C10) 

MARCHE (C11) ABRUZZO (C13) 

REGIME B 

LAZIO (C12) MOLISE (C14) CAMPANIA (C15) PUGLIA 

(C16) BASILICATA (C17) CALABRIA (C18) SICILIA (C19) 

SARDEGNA (C20) 
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Table 3: Results of Step II – Procedure: 

SEM model – ML estimates, 1970-1999 

 Regime A 

 Coefficient Std. Err. t 

ly -0.0518 0.0262 -1.98 

lsk -0.0027 0.0234 -0.12 

lsh -0.0272 0.0340 -0.8 

lndx -4.5853 2.2157 -2.07 

constant 0.225   

Rate of conv.* 0.011   

 Regime B 

 Coefficient Std. Err. t 

ly -0.0345 0.0577 -0.6 

lsk 0.0013 0.0268 0.05 

lsh 0.0061 0.0696 0.09 

lndx -0.9948 2.7989 -0.36 

constant 0.1777 0.1510 1.18 

Rate of conv.* 0.007   

λ 0.3118 0.4111 0.76 

 

*Wald test on H0 : Rate of conv. = 0.  

For regime A, χ2
=3.72 (p-value=0.05);  

for regime B, χ2
=0.35 (p-value=0.56). 

 

 
Table 4: Results of Step II – Procedure: 

SAR model – ML estimates, 1970-1999 

 Regime A 

 Coefficient Std. Err. t 

ly -0.0602 0.0203 -2.96 

lsk -0.0048 0.0232 -0.21 

lsh -0.0187 0.0267 -0.7 

lndx -4.4432 2.030 -2.19 

constant 0.196   

Rate of conv.** 0.012   

 Regime B 

 Coefficient Std. Err. t 

ly -0.0416 0.0551 -0.76 

lsk 0.0034 0.0219 0.16 

lsh 0.0114 0.0680 0.17 

lndx -0.9317 2.6063 -0.36 

constant 0.1557 0.1506 1.03 

Rate of conv.** 0.009   

ρ 0.4689 0.2618 1.79 

 

**Wald test on H0 : Rate of conv. = 0.  

For regime A, χ2
=8.25 (p-value=0.004); 

for regime B, χ2
=0.55 (p-value=0.46). 
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Table 5: Results of Step II – Procedure 

Conditional convergence rates and spatial effects coefficients 

ML estimates – sub-periods 

NO SPATIAL EFFECTS Spatial effect Rate of convergence 

    Regime A Regime B 

60s  0.012 0.056 

70s  0.006 0.034 

80s  0.016 -0.005 

90s   0.030 -0.008 

SPATIAL ERROR MODEL λ Rate of convergence 

    Regime A Regime B 

60s -0.108 0.011 0.059 

70s 0.045 0.005 0.033 

80s -0.394 0.016 0.002 

90s -0.107 0.032 -0.007 

SPATIAL LAG MODEL ρ Rate of convergence 

    Regime A Regime B 

60s 0.0429 0.011 0.054 

70s 0.2109 0.004 0.030 

80s -0.2627 0.015 -0.006 

90s 0.1454 0.029 -0.007 

 

 


