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Abstract
The paper reports an experimental study based on a variant of the pop-

ular Chinos game, which is used as a simple but paradigmatic instance of
observational learning. There are three players, arranged in sequence, each
of whom wins a fixed price if she manages to guess the total number of coins
lying in everybody’s hands. Our evidence shows that, despite the remark-
able frequency of equilibrium outcomes, deviations from optimal play are
also significant. And when such deviations occur, we find that, for any given
player position, the probability of a mistake is increasing in the probability
of a mistake of her predecessors. This is what we call an error cascade, which
we rationalize by way of a simple model of “noisy equilibrium”.
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1 Motivation

There are many situations of economic interest that involve public sequen-
tial decisions — that is, choices perfectly observed by others and made in
a sequential order in which the position and identity of each player is well
anticipated. This is often the case of financial markets daily routine (where
the moves of at least some “big players” are known to the market), or the
choice of firms on technological adoptions under uncertain market conditions.
As both examples suggest, in these situations agents may have some private
but incomplete information on which is the profitable decision. Therefore,
the action they take (as well as their identity and reputation) may implicitly
convey some of this private information to late movers, who can use it as
input in their own decisions. Then, it may well happen that the higher the
number of agents who have already taken their decision, the lower the level
of uncertainty faced by those who still have to do it. This is what is often
labelled as observational (or positional) learning, which has been the object
of recent attention, both on the theoretical and the experimental side.

This paper reports an experimental study on observational learning based
on a traditional parlour game played in many countries, which in Spain is
known as Chinos.1 In this game, players start by hiding in their hands a
number of coins (or pebbles), from zero to a certain maximum number (often
three). Then, in some pre-specified order, each player produces a guess on
the total number of coins in the hands of every player. When doing so, a
player is informed of her own number of coins as well as the guesses produced
by all others who preceded her.

Formally, this yields a multi-stage game with incomplete information. In
its simplified version played in the lab, the number of coins in the hands
of each player is the outcome of an exogenous random mechanism, i.e., a
stochastic move by Nature. We further simplified matters by considering
just three players and restricting the number of coins in the hands of each
player to be either zero or one. Finally, concerning payoffs, we design the
game so that players’ incentives do not conflict. Specifically, we allow players
to submit the same guess, and the same fixed price is awarded to all subjects
who guess the total number of coins right.

1The word “chinos” is a slight modification of the Spanish word “chinas”, which refers
to the pebbles that players may hide in their hands when playing the game. This game
was first analyzed theoretically by Pastor-Abia et al. [28].
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As a consequence of this payoff structure, the modified Chinos game that
is the object of our experiment turns out to have a unique Perfect Bayesian
Equilibrium. In it, after observing any given player’s guess, each subsequent
player infers exactly the number of coins lying in the formers’ hands. There-
fore, the probability of winning increases with player position, with the last
player in the sequence guessing the correct answer with certainty.

In this light, the main objective of our experiment can now be advanced.
Succinctly expressed, it is to contrast whether, as theory would unambigu-
ously prescribe, first movers choose clear-cut signalling guesses and followers
are perfectly able to “decipher” the predecessors’ actions and react accord-
ingly. These are the main regularities we would expect to find in the experi-
mental evidence, possibly entangled by considerations of learning and noise,
unavoidable in any real-world context.

In this respect, we find that, qualitatively, our experimental results mimic
theoretical predictions, in that we observe that the frequency with which
the correct answer is guessed increases with player position. This suggests
that late movers use inference to gain information on their predecessors’
signals and thus have a higher chance to guess right. In fact, we find that
players’ guesses are always significantly correlated with the guesses of their
predecessors. However, we also find that the resulting guessing probabilities
are lower than predicted, so players make significant errors along their play.
More precisely, it turns out that the higher the player position, the higher the
difference between actual and predicted frequency of right guesses. Hence,
as it often happens, we find that equilibrium analysis seems to explain the
data, but only imperfectly, and that there are systematic deviations from
equilibrium. This leads us to propose a simple model — we call it a model
of “error cascades” — that happens to deliver interesting insights on players’
behavior.

Our model is motivated by the fact that, in the experimental setup, the
same game is repeated 20 rounds among the same group of three subjects,
each of which is always made to occupy the same player position. Even
though subjects are involved, in effect, in a finitely-repeated game, we are
not particularly worried of “repeated-game effects” since, as we already no-
ticed, any given repetition has a unique equilibrium. This is because, since
players are rewarded of a fixed prize only if their own guess is correct -
independently on the behavior of the other group members- players cannot
credibly trade the “quality” of their message in search of higher future re-
wards. On the other hand, it is reasonable to posit that players can learn
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how to interpret the behavior of others on the basis of past experience. Thus,
subjects should be able to detect systematic patterns displayed by the be-
havior of others. In contrast with situations in which groups are formed
at random at every round (which is the standard in most experimental set-
tings), here late movers should have the possibility to “tailor” their beliefs to
the past observed behavior of their predecessors, whose identity remains the
same throughout the experiment. In particular, this should allow learning
to occur even when partners’ behavior is suboptimal, as long as it remains
“consistently” so (i.e., it displays some regularities). To illustrate the point,
take the extreme situation (which, indeed, describes the actual history of
some experimental groups) in which, say, player 1 consistently delivers the
“wrong” guess. That is, she plays the equilibrium move which corresponds
to the signal 1 when she receives signal 0 and vice versa. Since all payoff
relevant information (i.e., the actual sequence of private signals) is made
public to all group members at the end of every round, we may expect that
(rational) players 2 and 3 of the group in question should eventually adjust
their beliefs to this situation and optimally react to it. After all, player 1’s
strategy is as informative of her private signal as the equilibrium one would
have been!

But what if such adjustment is not taking place completely, say on behalf
of player 2? Or what if it does not take place at all? In the context of posi-
tional learning, “rationality” should allow an agent to entertain and validate
hypotheses about others that do not simply make their reasoning process
coincide with her own. For, alternatively, “any other view risks relegating ra-
tional players to the role of the ‘unlucky’ bridge expert who usually loses but
explains that his play is ‘correct’ and would have led to his winning if only
the opponents had played correctly...” (Binmore [8]).

The Chinos game is much simpler than bridge, and the simplified version
played in the lab is even much simpler than the customary one. Neverthe-
less, even within the version used in our experiment, players who play later
in the game should set up (if they are rational) a relatively complex system
of beliefs in order to properly specify the “correct way to play” under any
contingency. Thus, for example, if

(a) player 1 makes erratic choices and her guess is little informative of her
signal (or, alternatively, consistently delivers the “wrong” guess but its in-
formational content needs to be properly decoded), and/or
(b) player 2 does not adjust optimally to the former situation (and, probably,
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makes some additional errors on her own),

then player 3 will generally find it quite difficult to decipher the guesses of
1 and 2, together with their possibly subtle interplay. Notice that, in prin-
ciple, player 3 would not need to be concerned with these complications if
everybody’s play conformed to equilibrium and this were common knowl-
edge. For, in this case, the behavior of every player could be readily decoded
by inverting the equilibrium strategy (possibly with some uncertainty if this
strategy is not injective). But, if some players fail to play as equilibrium
prescribes, then the necessary decoding (if at all possible), must be done
on the basis of past observations, a mechanism that should introduce some
noise and significant complexity into the players’ task. And, naturally, this
complexity can only mount for game positions that occur later in the game,
where those considerations are compounded by interaction between preceding
players. Thus, under such circumstances, we would expect to find increasing
number/severity of mistakes as we move later in the game. This is indeed
the intuitive basis of what we shall call an error cascade, that is, a situation
where deviations from optimal learning/behavior by an agent playing later
in the game increases with similar deviations incurred by preceding players.

The learning pattern of Binmore’s “unlucky bridge expert” is what we
may call notional learning — that is, overconfidence in equilibrium beliefs
independently on how these beliefs match actual experience. Clearly, no-
tional learning in presence of consistent deviations from equilibrium yields
error cascades, and we certainly collect consistent evidence of such notional
learning in our experimental data (see Section 6). But it may be important
to notice that notional learning is simply a possible source of error cascades,
not necessarily the only one, or the most important. In any case, the aim of
this paper is not to provide a behavioral model to explain why error cascades
may occur. Rather, our objective is to make a general proposal on how to
check whether those cascades exist, and then suggest a way of measuring
them through a consistent statistical model. In a nutshell, our approach can
be conceptually decomposed in two parts. First, we posit that the proba-
bility of failing to play optimally by a certain player — which, as explained
above, is not necessarily the same as in equilibrium — is a function of the
analogous probabilities displayed by her predecessors. Second, we bring in
the data coming from our specifically designed experiment on the Chinos
game to test the empirical relevance of our stated conclusions — in essence,
that the implied coefficients are positive and significant.
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The remainder of the paper is organized as follows. Section 2 provides
a short survey of the literature on positional learning that is closest to the
approach pursued in this paper. Section 3 outlines the theory underlying
the experiment. Section 4 describes the experimental design and procedures.
Section 5 includes and discusses the summary statistics of our experimental
evidence. In Section 6, we present the evidence for error cascades. Finally,
Section 7 concludes. The proofs of the theoretical results as well as the
experimental instructions are contained in the Appendix.

2 Related literature

In the context of positional learning, herd behavior and information cascades
have been first analyzed in the seminal papers of Banerjee [4] and Bikhchan-
dani et al. [5]. In the latter, there are two possible states of the world, drawn
with the same ex-ante probability. At each round, one of the two states is
selected. Then agents, in a fixed order, have to guess the true state after
receiving a private signal, with the probability of the true state conditional
on the signal being greater than 1/2. Like in our Chinos game, agents win
a fixed price if their guess is right. Given this theoretical setup, they show
that the corresponding Bayesian equilibrium yields information cascades if
late movers disregard their private information when the evidence against it
(which they can infer through their predecessors’ guesses) is overwhelming.
This behavior, although individually rational, may be inefficient, because
it overvalues first-movers private information. To the extent to which this
information may be misleading, the entire sequence of decisions may be mis-
leading, too. By contrast, in the Chinos game, informational cascades can
never occur in equilibrium. This is because, unlike in Bikhchandani et al.
[5], in the Chinos game every player holds a piece of information over the
ruling state of nature which cannot be substituted by anybody else’s. In
other words, in the Chinos game private signals are strategic complements
(as opposed to substitutes) in revealing the uncertainty which characterizes
the environment.2

2In this respect, the closest paper to ours is Çelen and Kariv [11]. They analyse a situ-
ation where each agent receives a signal from the continuous space [−10, 10] with uniform
probability, and players have to guess sequentially whether the sum over the signals of all
players is “positive” or “negative”. Their objective is to differentiate information cascades
from herd behavior in the lab.
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Turning to the sphere of applications, models of positional learning have
been applied to explain a wide variety of social and economic phenomena.
To name a few, Kennedy [23] focuses on how firms shape their business
strategy; Welch [29] studies consumer behavior; Glaeser et al. [20] or Kahan
[22] deal with spread of crime; and Lohmann [25] focuses on political action.
Finally, a particularly fruitful strand of applications has been concerned with
the phenomenon of speculative bubbles in financial markets, on which Avery
and Zemsky [3], Lee [24] and Chari and Kehoe [12] have provided useful
insights from the perspective of information cascades.3

Positional learning has also been the object of a significant body of ex-
perimental work. Anderson and Holt [2] develop an experiment based on
Bikhchandani et al. [5]. Specifically, they observe a high frequency of equi-
librium cascade behavior, although lower than the theoretical prediction.
Allsopp and Hey [1] test experimentally Banerjee’s [4] model. Again, they
find that herding occurs less frequently than predicted. Cipriani and Guarino
[14] test experimentally an environment in which agents can buy or sell an
asset whose value depends on the realization of the state of nature. Two ex-
perimental treatments are compared: one in which the asset price is fixed (in
this sense, this is equivalent to [2]), and one in which the price endogenously
fluctuates depending on the information available at the time (this is the
setup theoretically analyzed by Avery and Zemsky [3]). While in the former
setup equilibrium behavior yields information cascades, in the latter rational
agents should always follow their own signal. In this respect, Cipriani and
Guarino’s [14] experimental findings conform with these theoretical insights,
since more herding is observed in the fixed-price scenario.4

3 The Chinos game

In the Chinos game played in the lab, three players, indexed by i ∈ N =
{1, 2, 3}, privately receive an iid signal si ∈ {0, 1}, with si = 1 chosen with
probability p uniform across players. Players act in sequence, as indicated

3See the survey Bikhchandani et al. [6] for a review of applications of models of informa-
tion cascades in various economic setups, and the surveys of Camerer [10], Bikhchandani
and Sharma [7] and Hirshleifer and Teoh [21] for the financial literature on the subject.

4The paper by Drehman et al. [15] is quite close to Cipriani and Guarino [14]. They
collect a large amount of data (involving more than 6400 subjects) from an internet ex-
periment and find that the presence of a flexible market price prevents herding. They also
use an error-based model to explain speculative “contrarian” behavior.

8



by their indices, and have to guess the sum of signals, σ ≡ s1 + s2 + s3. By
the time player i makes her guess gi ∈ G ≡ {0, 1, 2, 3}, she knows her own
signal (si) and the guesses of those players j < i who acted before her in
the sequence. All players who guess correctly (i.e., those for which gi = σ)
receive a fixed prize equal to 1, while any incorrect guess yields a payoff of
0. As explained, this means that all players have an unambiguous incentive
to maximize their chances of guessing correctly, hence revealing their private
signal to later movers.5

We focus on behavioral strategies, defined in the conventional fashion as
a mapping from information sets to (possibly probabilistic) guesses. Let Hi

denote the collection of player i’s information sets. For player 1, we can
simply write H1 ≡ {h = s1 : s1 = 0, 1}, since she has only two information
sets that can be associated to each of the possible realizations of s1. For
players 2 and 3, information sets can be defined as H2 ≡ {h = (g1, s2)}
and H3 ≡ {h = (g1, g2, s3)}, respectively. Player i’s behavioral strategy
is denoted by γi : Hi → ∆(G), where γhi (gi) stands for the probability of
guessing gi at information set h.

Next, we define players’ beliefs as systems of probabilities of signals condi-
tional on guesses. Given that signals are iid and guesses are publicly observed,
we make the simplifying assumption that later movers hold common beliefs of
previous signals. First, we have the system {µ1(g1)}g1∈G, where µ

1(g1) ∈ [0, 1]
is the probability associated (by players 2 and 3) to s1 = 1 when the guess
of player 1 has been g1. Analogously, we have {µ2(g1, g2)}g1,g2∈G, where
µ2(g1, g2) ∈ [0, 1] is the probability associated (by player 3) to s2 = 1 when
the guesses of players 1 and 2 have been g1 and g2, respectively.

We are now in a position to characterize players’ optimal behavior. For
concreteness, we shall do it under the assumption that p > 2

3
(in the ex-

periment, we made p = 3
4
). In this case, the distribution over the sum of k

signals (binomially distributed as Bin(k, p) for k ≤ 2) is unimodal, a feature
that greatly simplifies the determination of the unique equilibrium outcome.
Specifically, let Mk(p) be the mode of Bin(k, p), i.e., the most likely realiza-
tion of the sum of k signals, so that M1(p) = 1 and M2(p) = 2, for all p >

2
3
.

Then, given the realized vector of signals s ≡ (s1, s2, s3), we can “solve for-
ward” for the unique equilibrium sequence of guesses ḡi(·) common to all the

5This is in contrast with the traditional version of the Chinos game, where agents’
incentives are opposed because guesses have to be distinct, no player allowed to mimic the
guess of a predecessor. This fundamental variation of the game is analyzed in a companion
work, Feri et al. [16].
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perfect Bayesian equilibria of the game, which only differ with respect to how
out-of-equilibrium beliefs are specified:

ḡ1(s1) = s1 +M2 (p) = s1 + 2,

ḡ2(g1, s2) = (g1 −M2 (p)) + s2 +M1 (p) = g1 − 1 + s2 (1)

ḡ3(g2, s3) = (g2 −M1 (p)) + s3 = g2 − 1 + s3,

To see this, remember that, since p is common knowledge, also M1(p) and
M2(p) are common knowledge. Thus, player 2 and player 3 can infer s1 from
g1 (i.e., s1 = g1 − M2(p)) and, by the same token, player 3 can infer s2
from g2 (since g2 −M1(p) = s1 + s2). Therefore, in equilibrium, each player
is perfectly informed of the signal received by her predecessors, computes
her guess by taking expectations over the signals of her successors and, in
doing so, perfectly reveals her own signal. This implies that, the higher the
player position, the higher the chances to win the prize. In particular, player
3 guesses right with probability one, while player 2 does so with probability
Pr(s3 =M1(p)) = p, and player 1 with probability Pr(s2+s3 =M2(p)) = p

2.
Finally, note that, when player 3 computes her optimal guess in (1), she does
not need to look at player 1’s guess: all relevant information (including that
regarding s1) is subsumed in player 2’s guess, g2.

Since we aim at constructing a statistical model of error cascades, it is
helpful at this stage to compute players’ optimal responses, in and out-of-
equilibrium. For a given behavioral strategy profile γ =

{
γhi
}
and a given

system of beliefs µj(·), j < i, let θhi be the probability that player i plays a
best response at h ∈ Hi, that is,

θhi = γ
h
i (g

∗

i ), (2)

where g∗i = argmaxgi π
h
i

(
gi | (µ

j)j<i

)
and πhi (gi | (µ

j)j<i) is player i’s ex-

pected payoff (evaluated at h) associated to guess gi, given player i’s system
of beliefs (µj)j<i.

6

We start with player 1, for whom matters are straightforward since beliefs
play no role. For each s1 ∈ {0, 1} and g1 ∈ G, expected payoffs π

(s1)
1 (g1) are

6Notice that, there are (non generic) combinations of guesses and beliefs for which
best-replies may not be unique. Since this never happens with our experimental evidence,
we shall abstract to the problem of multiple best-replies here.
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as follows:

g1 = 0 g1 = 1 g1 = 2 g1 = 3

s1 = 0 (1− p)2 2p(1− p) p2 0
s1 = 1 0 (1− p)2 2p(1− p) p2

(3)

This, in turn, implies that, to maximize her chances to win the prize, player
1 should simply add Mk(p) = 2 to her own signal:

θ
(s1)
1 = γ

(s1)
1 (s1 + 2). (4)

For future reference, also notice that the payoff loss incurred by player 1 off
the equilibrium path (i.e., when g1 < 2) is lower when the signal s1 = 0 than
when the signal is s1 = 1.

We move to player 1’s followers. From the perspective of observational
learning, player 2 and 3’s optimal behavior depend on their respective systems
of beliefs, µj(·), as these are derived from the behavioral strategies perceived
to be played by their predecessors j′ ≤ j.

First, consider the computation of the beliefs {µ1(g1)}g1∈G, supposing
that the strategy on the part of 1 (commonly) perceived by 2 and 3 is some

given γ̂1. Then, for any g1 ∈ G such that γ̂
(s1)
1 (g1) > 0 for some s1, we can

readily apply Bayes Rule and compute:7

µ1(g1) =
pγ̂11(g1)

(1− p)γ̂01(g1) + pγ̂
1
1(g1)

.

Now, as a magnitude derived from µ1(·), we want to compute a related
variable that will play a key role in our analysis, namely, the estimated prob-
ability β

(g1)
1 that player 1 is “behaving optimally” conditional on delivering

any given guess, g1 ∈ G. When g1 ∈ {2, 3}, what this means is clear: we

should simply make β(3)1 = µ1(3) and β(2)1 = 1 − µ1(2), given that player
1 should guess 2 (3) when s1 = 0 (s1 = 1). Instead, for any g1 < 2, there
is no way to rationalize the guess as optimal (i.e., payoff maximizing), for
any possible signal, s1. In that case, we extend naturally our approach and

7If the prior probability (1− p)γ̂01(g1) + pγ̂
1
1(g1) equals zero, the corresponding beliefs

are not defined. In Section 6, in which behavioral strategies are empirically estimated
as relative frequencies of use, this only happens the first time a guess is submitted by a
particular player. This is why, in our regressions, these observations have been dropped
by our database.
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label any guess g1 < 2 as “optimal” if it is submitted under the signal s1
for which the expected payoff loss (relative to behaving in a strictly optimal
way) is minimized. Specifically, this means that, when g1 < 2, we must make

β
(g1)
1 = 1 − µ1(g1) since, by (3), the expected loss is minimal when s1 = 0.

8

To sum up, a compact specification of the complete array of the probabilities
β
(g1)
1 is given by:

β(g1)1 =

{
(1−p)γ̂01(g1)

(1−p)γ̂01(g1)+pγ̂
1
1(g1)

if g1 < 3,
pγ̂11(g1)

(1−p)γ̂01(g1)+pγ̂
1
1(g1)

if g1 = 3.
(5)

By analogy with (3), we are now in the position to specify player 2’s

expected payoff, π
(g1,s2)
2 (g2). When s2 = 1, we have

s2 = 1 g1 < 3 g1 = 3

g2 = 0 0 0

g2 = 1 β(g1)1 (1− p) (1− β(g1)1 )(1− p)

g2 = 2 β
(g1)
1 p+ (1− β

(g1)
1 )(1− p) β

(g1)
1 (1− p) + (1− β

(g1)
1 )p

g2 = 3 (1− β
(g1)
1 )p β

(g1)
1 p

(6)

while, when s2 = 0, for all g1 ∈ G, π
(g1,0)
2 (3) = 0 and π

(g1,0)
2 (g2) = π

(g1,1)
2 (g2+

1) for all g2 < 3.
As we did for player 1 in (4), our empirical analysis in Sections 5 and 6

relies on assessing the probability that, if player 2 actually follows a particular
behavioral strategy γ2, her induced guess is optimal. This probability, which
we denote by θh2 for each h = (g1, s2) ∈ H2, is characterized by the following

Proposition 1 Let γ2 be the behavioral strategy played by player 2 and define
the function φ : [0, 1] → R by φ(x) = 1−2x

1−3x
. Then, the determination of each

θ
(g1,s2)
2 can be divided into two cases:9

8In this respect, notice that for the cases where g1 ∈ {2, 3}, payoff-loss minimality and
payoff-gain maximality coincide, so we can view the former criterion as subsuming the
latter.

9To understand the form of θ
(g1,s2)
2 in either case, note that if either g1 < 3 and

β
(g1)
1 = φ(p) or g1 = 3 and β

(g1)
1 = 1−φ(p), then the expected payoff of choosing g2 = s2+1

equals the expected payoff of g2 = s2 + 2 and is strictly higher than the expected payoff
of choosing any other guess. Hence, at thresholds given by the corresponding values φ(p)

and 1− φ(p) we have θ
(g1,s2)
2 = γ

(g1,s2)
2 (s2 + 1) + γ

(g1,s2)
2 (s2 + 2). Also note that, for our

experimental sessions where p = 3/4, we have φ(3/4) = 2/5.
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(a) Suppose g1 < 3. Then θ
(g1,s2)
2 =

{
γ
(g1,s2)
2 (s2 + 1) if β

(g1)
1 > φ(p)

γ(g1,s2)2 (s2 + 2) if β(g1)1 < φ(p)

(b) Suppose g1 = 3. Then θ
(g1,s2)
2 =

{
γ
(g1,s2)
2 (s2 + 1) if β

(g1)
1 < 1− φ(p)

γ
(g1,s2)
2 (s2 + 2) if β

(g1)
1 > 1− φ(p)

Proof. See the Appendix.

Finally, we turn to the situation faced by player 3. We first obtain, by
analogy with (5), the probabilities β

(g1,g2)
2 with which player 2 is estimated

to behave optimally when the guesses observed for player 3’s predecessors
are g1 and g2. These probabilities are now a function of the strategies γ̂1
and γ̂2 followed by players 1 and 2 that are perceived by player 3. Or, in
an equivalent way, they are a function of the perceived strategy γ̂2 and the

probabilities β
(g1)
1 that player 1 is perceived to play optimally after every

possible g1. The exact form of β
(g1,g2)
2 is provided by

Proposition 2 Let γ̂1 and γ̂2 be the strategies of players 1 and 2 perceived

by player 3 and let β
(g1)
1 be computed as in (5). Given (g1, g2) ∈ G

2, β
(g1,g2)
2

is computed as follows:

β
(g1,g2)
2 =





pγ̂
(g1,1)
2 (g2)

pγ̂
(g1,1)
2 (g2)+(1−p)γ̂

(g1,0)
2 (g2)

if





g2 = 3 or

g2 = 2, g1 < 3 and β
(g1)
1 > φ(p) or

g2 = 2, g1 = 3 and β
(g1)
1 < 1− φ(p)

(1−p)γ̂
(g1,0)
2 (g2)

pγ̂
(g1,1)
2 (g2)+(1−p)γ̂

(g1,0)
2 (g2)

otherwise.

(7)

Proof. See the Appendix.

We can then determine, by analogy with Proposition 1, the probabilities
θ
(g1,g2,s3)
3 with which player 3 chooses a best response if she plays according to

some given strategy γ3, as a function of the values of β
(g1)
1 and β

(g1,g2)
2 specified

in (5-7) A formal statement of the result, as well as a comprehensive account
of the technical details, are relegated to the Appendix (see Proposition 3 and
its proof). However, Figure 1 carries out graphically a complete description
of the situation.
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Figure 1. Player 3’s best response

To understand Figure 1, bear in mind that player 3 does not directly
observe s1 and s2. However, given β

(g1)
1 and β

(g1,g2)
2 , player 3 assigns a sub-

jective probability to s1 + s2 being 0, 1 or 2. Clearly, for any realization
of β

(g1)
1 and β

(g1,g2)
2 for which the mode of s1 + s2 is z ∈ {0, 1, 2}, we must

have θ
(g1,g2,s3)
3 = γ

(g1,g2,s3)
3 (s3 + z). This is represented in Figure 1 by identi-

fying, for all possible pair of predecessors’ guesses (g1, g2), the regions of the

(β
(g1)
1 , β

(g1,g2)
2 )-space where the mode of s1 + s2 is 0, 1, or 2. The function φ

and its transformations φ−1, 1 − φ, and 1 − φ−1, determine the boundaries
of the corresponding regions.

4 Experimental design

In what follows, we describe the features of the experiment in detail.

1. Sessions. The 4 experimental sessions were run in a computer lab.10

A total of 48 students (12 per session) were recruited among the stu-
dent population of the Universidad de Alicante — mainly, undergradu-
ate students from the Economics Department with no (or very little)

10The experiment was programmed and conducted using z-Tree (Fischbacher [17]).
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prior exposure to game theory. Instructions were provided by a self-
paced, interactive computer program that introduced and described
the experiment. Subjects were also provided with a written copy of the
experimental instructions, identical to what they were reading on the
screen.11

2. Matching. In each session, subjects played 20 rounds of the Chinos
game described in Section 3. In all 20 rounds, subjects played anony-
mously in groups of 3 players. Each group consisted of the same sub-
jects throughout (that is, group composition was kept constant) and
each of them occupied the same position. Both of these important
features of the experimental design were publicly announced at the be-
ginning of each session. In every round, each player’s signal was the
outcome of an iid random draw with p = 3

4
. Given these experimental

conditions, we were able to collect 16 independent observations of our
experimental environment.12

3. Payoffs. All monetary payoffs in the experiment were expressed in
Spanish pesetas (1 euro is approx. 166 pesetas).13 All subjects received
1000 pesetas just to show up. The fixed prize for each round was set
equal to 50 pesetas. On average, subjects received about 15 euros for
a 75’ experiment.

4. Ex-post information. After each round, all subjects were informed of all
payoff-relevant information, that is, the correct guess (and, therefore,
their individual payoff), as well as the individual guesses and signals
of all subjects in their group. In addition, they were provided with a
“history table,” to better track the sequence of signals and guesses of
the other members of their group in all previous rounds.

11A copy of the instructions, translated into English, can be found in the Appendix.
12Since subjects interact with each other within groups but not across groups, each

group can be considered as a statistically independent observation.
13It is standard practice, for all experiments run in Alicante, to use (obsolete) Spanish

pesetas as experimental currency. The reason for this design choice is twofold. First, it
mitigates integer problems, compared with other currencies (USD or euros, for example).
On the other hand, although Spanish pesetas are no longer in use (substituted by the
euro in the year 2002), Spanish people still use pesetas to express monetary values in
their everyday life. Thus, by using a “real” (as a opposed to artificial) currency, we
avoid the problem of framing the incentive structure of the experiment using a scale (e.g.
“experimental currency”) with no cognitive content.
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5 Results I: descriptive statistics

This section is divided in two parts. First, we look at winning distributions,
that is, the frequency with which players win the prize. Then, we turn to an-
alyze behavior — we check, specifically, the extent to which players’ behavior
in the experiment adjusts to the theoretical (i.e., equilibrium) prediction.

5.1 Winning distributions

Table 1 shows players’ winning frequencies (i.e., the fraction of times when
their guess coincided with the sum of signals), disaggregated by player po-
sition. We report within brackets the corresponding theoretical prediction,
that is, the probability of guessing right (or, equivalently, winning the prize)
if all players conformed to the equilibrium strategy (1).

Player Frequency of guessing right
1 40.51 (56)
2 50.32 (75)
3 61.08 (100)

Table 1. Winning distribution

First, we can observe these probabilities, although lower than the corre-
sponding equilibrium levels, are qualitatively consistent with the theoretical
predictions, since the probability of winning is increasing with player po-
sition. We also observe that the difference between actual and theoretical
frequency is increasing with player position (15.49 for player 1, 24.68 for
player 2 and 38.92 for player 3).

5.2 Aggregate behavior

Now we turn our attention to subjects’ behavior. Since we run 4 sessions
of 20 rounds each, with 4 groups of 3 players in each session, our panel
database contains 4 × 4 × 20 = 320 guessing sequences for 4 × 4 = 16
independent observations. The focus here will be on behavioral strategies
along the equilibrium path, while we postpone to the next section our analysis
of out-of-equilibrium behavior.

Tables 2.1a), 2.2a), and 2.3 report behavioral strategies of players 1 to 3,
respectively. In all tables, each row (column) corresponds to an information
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set (a guess conditional on the information set being reached). In each cell of
the three matrices, we report absolute (top) and relative (bottom) frequency
of use of a particular guess — where the latter can be seen as the “aggregate
behavioral strategy” empirically observed. In all tables, we also highlight in
light (dark) grey the equilibrium path corresponding to g1 = 2 (g1 = 3). On
the other hand, Tables 2.1b) and 2.2b) look at aggregate choice frequencies
of players 1 and 2 from the perspective of information decoding; that is,
they calculate the relative frequencies of signals conditional on a particular
guess.14 In a strict sense, the latter are the only relevant regularities that
players need to extract from their predecessors’ strategies, namely, the extent
to which players’ guesses reveal their private signals.

Let us now consider in turn each of the three player positions in some
detail. First, observe in Table 2.1a) that player 1 guesses consistently with
equilibrium 58.43% of the time ((78 + 109)/320). Also notice that the equi-
librium guess corresponds to the modal choice in both information sets, al-
though this frequency is higher when player 1 gets signal 0 (72% vs. 52%).
The evidence that player 1 seems to play better when s1 = 0 is also confirmed
when we calculate the expected probabilities of winning given observed be-
havioral strategies (46% vs. 37% for s1 = 0 and s1 = 1, respectively). As
for out-of-equilibrium guesses notice that, in both information sets, relative
frequencies of use of suboptimal actions are aligned with expected payoffs
(3). In other words, the higher the expected payoff of each guess, the higher
the corresponding frequency associated to it.15 Finally, concerning the infor-
mation content of player 1’s guesses, we notice that, even though she “plays
better” when s1 = 0, her “message” is much clearer when g1 = 3. For, as the
right-bottom cell of Table 2.1b) shows, it is always the case that s1 = 1 when-
ever g1 = 3 — and we can reasonably assume that, sooner or later, players 2
and 3 have come to realize this “lucky coincidence”.

14Since player 3 is the last in line, what would be Table 2.3b) is omitted here. Also
notice that player 2 never guessed 0. The symbol “N/A” in Table 2.2b) simply indicates
that, in this case, conditional probabilities cannot be calculated.

15This empirical evidence supports our, somehow arbitrary, treatment of out-of-
equilibrium “optimal behavior” implicit in (5).
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Table 2.1. Player 1’s behavioral strategy

We now move to player 2, whose aggregate behavior is reported in Table
2.2. First, Table 2.2a) shows that player 2 conforms to the equilibrium strat-
egy 65.78% of the time, ((20 + 61 + 22 + 72)/266), where 266 is the number
of times player 1 guessed as in equilibrium after a history consistent with it,
i.e., whenever g1 ≥ 2). The distortion detected for player 1 (namely, that the
frequency of equilibrium behavior depends on her own signal, s1) also occurs
for player 2, but in the opposite direction: conformity to equilibrium is now
higher for the higher signal s2 = 1. On the other hand, we also find that
conformity to equilibrium behavior is much stronger after g1 = 3 than after
any other guess. This may be due to the fact that, in that case, player 1’s
message is “crystal clean”, as g1 = 3 is always associated with s1 = 1. We
may then conjecture that experience should lead player 2 and 3 to reach this
same conclusion. As a consequence, adherence to equilibrium behavior on
behalf of player 2 is higher when g1 = 3 (86.23%) than with g1 = 2 (51.59%).

Obviously, for player 1, guessing according to equilibrium behavior (1)
always coincides with optimal behavior, independently her successors’ be-
havior. Indeed, the same happens for player 2 when she reacts as in (1) after
observing g1 = 3, since this guess always happens to be an accurately reveal-
ing message, just as in equilibrium. Concerning the optimality of player 2’s
response to g1 = 2, however, matters are much more intricate. For, as we
observe in Table 2.1b), this guess was almost equally likely to be delivered
for s1 = 0 and s1 = 1. This entails a message decoding different from that
at equilibrium, which therefore needs to be learned by player 2 through ex-
perience. But such a learning introduces additional complexity into player
2’s decision problem, possibly leading to his suboptimal behavior and, in
turn, increasing complexity and entailed suboptimality as well on player 3’s
behavior. This is what we shall call an error cascade in Section 6. To study
the phenomenon, we need to consider separately each of the 16 experimental
matching groups (i.e., disaggregate the observations) and, most importantly,
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account properly for how player 2’s and 3’s beliefs evolve (or should evolve),
redefining over time what is to be considered optimal behavior. We postpone
a detailed discussion of these issues to the following section, where error
cascades are the focus of the analysis.
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Table 2.2. Player 2’s behavioral strategy (along the equilibrium path)

Finally, consider Table 2.3, which summarizes player 3’s aggregate be-
havior. There we find that player 3 follows the equilibrium strategy (1) with
a frequency of 63.23%. And, similarly to player 2, player 3 is more likely
to play the equilibrium strategy when her predecessors’ guesses are higher.
Overall, player 3’s likelihood to mimic the equilibrium grows as i) her own
signal s3 is higher and ii) players 1 and 2’s guesses are also higher. The
effect in i) corresponds to the systematic distortion tailored to the player’s
own signal that was already encountered for players 1 and 2. The bias, in
this case, is in the same direction as for player 2: player 3 is more likely
to play the equilibrium strategy when her signal is higher. On the other
hand, the effect in ii) seems to reflect that, on average, “higher guesses are
associated to clearer messages.” As a case in point, consider a situation in
which both players 1 and 2 produce a common guess g1 = g2 = 3. Then, it
is intuitive that player 3 must expect (as also confirmed by the experience
she will keep gathering on ongoing play) that both player 1 and 2 received a
signal equal to 1. But, in general, to carry out a proper discussion of player
3’s rationality we must address the same problem encountered for player 2,
i.e., the average statistics contained in Table 2.3 are not enough. We need a
richer understanding of the dynamics of learning and adjustment that take
place over the repeated play unfolding each round. As advanced, this is the
issue undertaken in the next section.
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Table 2.3. Player 3’s behavioral strategy (along the equilibrium path)

6 Results II: Error cascades

The aim of this section is to go beyond the aggregate information contained in
Tables 2.1-2.3 to obtain a richer (dynamic) understanding of how information
decoding is unraveling along the individual (and completely independent)
histories of our 16 experimental matching groups. Specifically, we would like
to explore the conjecture that is suggested by the heuristic discussion closing
the previous section. Namely, we want to formalize and check precisely the
idea of whether the correct interpretation of a message (i.e., a submitted
guess) is negatively affected by its lack of consistency with optimality. Or, to
be more precise, our conjecture can be succinctly described as follows: as the
behavior of a player deviates from optimality, the messages she sends (even
if systematic and thus readily decodable) are interpreted more poorly; this,
in turn, affects the effectiveness of subsequent messages, thus triggering an
error cascade that exacerbates the phenomenon.

To carry out the test, we first estimate, at each round t and for each
experimental group, behavioral strategies γ̂hit =

{
γ̂hit(gi)

}
, i = 1, 2, 3, as

the relative frequency of use of each possible guess at each information set.
These play the role of the perceived strategies introduced in the theoretical
framework of Section 3. For information sets never reached at t, we posit
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uniform play, i.e., we assign equal probability to each guess in G. All this
leads to the full-fledged behavioral strategies estimated at the beginning of
round t, which are constructed as follows:

γ̂hjt(gj) =

{ ∑t−1
τ=1 χτ (h∧gj)∑t−1
τ=1 χτ (h)

if
∑t−1

τ=1 χτ (h) > 0
1
4
otherwise,

(8)

where χτ (Ξ) = 1 if the event Ξ occurs in round τ , and 0 otherwise. In
words, to estimate player j’s behavioral strategy at h, player i simply counts
the number of times player j has guessed gj at h, conditional on h being
visited sometime in the past. Otherwise, we assume that i assigns a uniform
probability distribution over j’s behavioral strategies at h.

Once (assumed common) perceptions on behavioral strategies γ̂hit are de-

rived, we can evaluate the induced probabilities, β
(g1)
1 and β

(g1,g2)
2 computed

as in (5-7), with all observations for which Bayes rule could not be applied
being omitted (cf. footnote 7). As explained in Section 3, those probabilities
are identified with the beliefs (as held by other players) that players 1 and 2
hold the signal that minimizes payoff loss, conditional on their guesses. For
our purposes, these beliefs measure the extent of optimality embodied by the
estimated strategies of players 1 and 2.

Given the beliefs β
(g1)
1 and β

(g1,g2)
2 induced by the empirical behavioral

strategies computed in (8), we are in a position to assess whether the behavior
of players 2 and 3 qualifies as optimal, i.e., maximizes expected payoffs given
those beliefs. For each subject (in player position) i, we construct an index
variable bhit ∈ {0, 1}, which is equal to 1 if and only if player i selects the
optimal guess at the information set h visited at t. For players 1 to 3, optimal
guessed are derived by (4) and Propositions 1 and 3, respectively.

Thus, as is standard in the learning literature (cf. for example the so-
called fictitious play), our approach implicitly assumes that players are (a)
myopic, as they only care about their current expected payoff in the game,
and (b) adaptive, as they adjust their beliefs on the opponents’ strategies by
matching the observed frequencies.16

Figure 2 tracks the relative frequency bit =
∑t
τ=1 b

h
iτ

t
with which, for each

experimental group and up to any round t = 1, ..., 20, each player i = 1, 2, 3
submitted her optimal guess (i.e., had bhit = 1). It shows that different groups

16The interested reader can find, for example, in the monograph by Fudenberg and
Levine [18] an extensive discussion of this literature.
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experienced rather heterogenous paths in this respect. The striking feature
that transpires from the evidence is that there is a significant tendency for
the different bit prevailing in each group to converge towards each other as
the session advances. That is, as t approaches the end value of 20, the
differences |bit − bjt| (i, j = 1, 2, 3) approach relatively small values even if
they witnessed much larger differences early on. This suggests a relationship
between them, probably mediated through the effect that optimal behavior
has on delivering clear, and thus useful, messages to successors. It points,
in other words, to a dependence of each bit on an overall assessment of the
past optimality (and thus “cleanness”) of the behavior by predecessors. And
in order to quantify these latter considerations at any given t, the prevailing
values of β

(g1)
1t and β

(g1,g2)
2t — depending on whether the player i in question

is a second or third mover — are the natural candidates highlighted by our
theoretical framework.

Figure 2. Average frequency of subjects’ optimal responses

The results of regressions motivated by our former discussion are reported
in Table 3. In these regressions, we estimate the Prob(bhit = 1) -basically,
what we define as θhi in (2)- as a logit function of si and the estimated βjt
of player i’s predecessors . In case of player 3, we also include an interaction
term, β1β2, to the regression. All the regressions of Table 3 also include
round dummies (whose estimated coefficients are not reported here), with
the reported standard errors taking also into account group clustering.
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2.3470.8170.0004.0500.3901.582s3

5.101-0.5290.1121.5901.4362.286ß1·ß2

1.798-1.1860.6880.4000.7610.306ß2

1.244-3.4690.355-0.9301.202-1.112ß1

3)

2.084-1.5680.7950.2600.9220.240Cons.

0.707-0.6090.8830.1500.3350.049s2

3.3341.4700.0005.0500.4752.402ß1

2)

2.504-0.3960.1541.4200.7401.054Cons.

-0.611-2.0640.000-3.6100.371-1.337s11)

Interval][95% Conf.P > zzStd. Err.Coef.Var.

Table 3. Error cascades

First, a simple consequence following from regression 1) confirms the
evidence already drawn from Table 2.1: the estimated coefficient for s1 is
negative and significant, indicating that player 1’s behavior is closer to equi-
librium after a low signal (s1 = 0), than it is after a high one (s1 = 1).
By the same token, as we already observed in the previous section, the es-
timated coefficients associated with s2 and s3 in regressions 2) and 3) are
negative, although they are not statistically significant. However, the novel
and more interesting conclusions are those derived from looking at the co-
efficients for βg11t and β

(g1,g2)
2t in regressions 2) and 3). In 2) we find strong

(positive) dependency of bh2t on βg11t . As for regression 3), the analysis on

the dependence of bh3t on β
(g1)
1t and β

(g1,g2)
2t is less transparent to read, given

the interaction term included in the regression. This is why, in 3), we also
estimate the corresponding marginal effects (evaluated at average values of

β
(g1)
1t and β

(g1,g2)
2t ). As Table 3 shows, all marginal effects have the expected

(positive) signs, with that associated to β
(g1,g2)
2t highly significant. This result

seems to suggest that the impact of predecessors’ mistakes vanishes as you
move further down in the sequence.

Overall, the dynamic analysis of the evidence provides support for the
idea that error cascades are a salient feature of subjects’ behavior in the Chi-
nos game played in the lab. As behavior becomes less aligned with optimality
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(either because it deviates from equilibrium or because it fails to adjust op-
timally to such deviations by others) the messages being sent are harder to
“understand.” Indeed, this even happens when the deviations are systematic
and therefore, in principle, could lend themselves to straightforward decodifi-
cation. The natural interpretation of the situation is that mistakes somehow
build up, intensifying the implications of what might otherwise be limited to
isolated deviations from rationality.

7 Summary and conclusion

The paper reports on an experiment designed to study whether agents, in a
sequential and repeated setup, are able to extract valuable information from
others’ decisions and react optimally. The first observation has been that,
qualitatively, players conform to the theoretical prediction of our game — i.e.,
in the aggregate, modal play coincides with equilibrium play. It has been
found, however, that there are also significant deviations from equilibrium.
Motivated by this finding, a statistical model has been proposed to analyze
the extent to which deviations from optimality by a certain player impairs
the ability of her successors to play optimally. This has led to identifying the
phenomenon that we call error cascades, namely, suboptimal behavior by a
player increases the likelihood of others to play suboptimally. The presence of
such cascades suggests that early errors makes the decoding task of successors
more difficult, thus intensifying the tendency of subsequent players to commit
analogous mistakes.

The paper provides experimental evidence that could prove useful for the
design of dynamic models aiming to understand human behavior in processes
of information transmission. It shows that such models should not only
accommodate the fact that players make errors, but also the possibility that
such errors may accumulate, or grow, along the decision sequence. The
experimental results, moreover, can be viewed as a warning for real-world
contexts where these considerations might be important. The fact that, in
our simple setup — with binary signals and an exogenous guessing sequence
— players mistakes are amplified quite sharply lead us to conjecture that
similar phenomena could also be quite prevalent in more complex real-world
situations. In financial markets, for example, this issue should be probably
taken into account by both participants and regulators.

Our experiment on the Chinos game is a first step in the analysis of

24



positional learning when agents’ private signals are strategic complements.
The results that we have described illustrate the potential of our approach,
and also suggest the interest of exploring different variations of it. In this
vein, a companion paper (Feri et al. [16]) studies experiments carried out on
two alternative versions of the Chinos game where only one player gets the
prize and therefore individual incentives do conflict.

In one of them, the first-win game, the first player who guesses correctly
wins the prize (or the last player, in case no one guesses correctly). In
contrast, the alternative last-win game has the prize going to the last player
who guesses correctly (or to the first player, in case no one guesses correctly).
The experimental data reveal that subjects react very differently to such fully
opposed kind of incentives. Whereas in the last-win game players tend to hide
their private signal by using pooling strategies, in the first-win game players
use separating strategies that reveal their information to their successors.
Another variation of the Chinos game has been studied by Carbone and Ponti
[9]. They introduce a smart device that allows one to control the intensity
of the payoff received by each player, and show that a Quantal Response
Equilibrium model (McKelvey and Palfrey, [26] and [27]) closely explains the
behavior observed in the lab.

Finally, as a further avenue for future research, an important develop-
ment would be to allow for a richer interaction (network) structure that
could better reflect the complex pattern of information transmission that
prevails in real economic environments. Setups of this sort have been the-
oretically studied by the important contribution of Gale and Kariv [19]. In
the experimental realm, interesting results for that model are reported by
Choi, Gale, and Kariv [13]. They consider contexts with just three agents
and three directed-network architectures: the star, the circle, and the com-
plete network. Interestingly, they find that both the network architecture
as well as the information structure have an important bearing on subjects’
behavior.
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Appendix

Experimental Instructions

Welcome to the experiment! This is an experiment to study how people
solve decision problems. Our unique goal is to see how people act on average;
not what you in particular are doing. That is, we do not expect any particular
behavior of you. However, you should take into account that your behavior
will affect the amount of money you will earn throughout the experiment.
These instructions explain the way the experiment works and the way you
should use your computer. Please do not disturb the other participants
during the course experiment. If you need any help, please, raise your hand
and wait quietly. You will be attended as soon as possible.

How to get money! This experimental session consists of 20 rounds in
which you and two additional persons in this room will be assigned to a
group, that is to say, including you there will be a total of three people in
the group. You, and each of the other two people, will be asked to make a
choice. Your choice (and the choices of the other two people in your group)
will determine the amount of money that you will earn after each round.
Your group will remain the same during the whole experiment. Therefore,
you will be always playing with the same people. During the experiment,
your earnings will be accounted in pesetas. At the end of the experiment you
will be paid the corresponding amount of Euros that you have accumulated
during the experiment.

The game. Notice that you have been assigned a player number. Your
player number is displayed at the right of your screen. This number represents
your player position in a sequence of 3 (player 1 moves first, player 2 moves
after player 1 and player 3 moves after players 1 and 2). Your position in
the sequence will remain the same during the entire experiment. At the
beginning of each round, the computer will assign to each person in your
group (including yourself) either 0 tokens or 1 token. Within each group,
each player is assigned 0 tokens with a probability of 25% and is assigned 1
token with a probability of 75%. The fact that a player is assigned 0 tokens
or 1 token is independent of what other players are assigned; that is to say,
the above probabilities are applied separately for each player.

At each round, the computer executes again the process of assignment
of tokens to each player as specified above. The number of tokens that
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each player is assigned at any particular round does not depend at all on
the assignments that he/she had in other rounds. You will only know the
number of tokens that you have been assigned (0 or 1), and you will not
know the number of tokens assigned to the other persons in your group. The
same rule applies for the other group members (each of them will only know
his/her number of tokens).

At each round you will be asked to make a guess over the total number of
tokens distributed among the tree persons in your group (including yourself)
at the current round. The other members of your group will also be asked to
make the same guess. The order of the guesses corresponds to the sequence
of the players in the group. That is to say: player 1 makes his/her guess first,
then player 2 makes his/her guess and, finally, player 3 makes his/her guess.
Moreover, you will make your guess knowing the guesses of the players in
your group that moved before yourself. Therefore, player 2 will know player
1’s guess and player 3 will know both player 1 and player 2’s guesses.

At each round, if you make the correct guess you will win a prize of 50
pesetas and if your guess is not the correct one you will earn nothing.

Proofs

Proof of Proposition 1

Let g1 < 3. From (5), s1 and s3 take value 1 with probabilities (1−β
(g1)
1 )

and p, respectively. Hence, player 2’s subjective probability distribution on
s1 + s3 is:

Pr (s1 + s3 = 0) = β
(g1)
1 (1− p)

Pr (s1 + s3 = 1) = β
(g1)
1 p+ (1− β

(g1)
1 )(1− p) (9)

Pr (s1 + s3 = 2) = (1− β
(g1)
1 )p

Player 2’s optimal strategy simply consists in adding s2 to the mode of
(9). First, we claim that the mode of (9) is not 0. Assume not. Then

β
(g1)
1 (1 − p) ≥ β

(g1)
1 p + (1 − β

(g1)
1 )(1 − p), i.e., β

(g1)
1 (2 − 3p) ≥ 1 − p, a

contradiction with p ∈ (2/3, 1).

We claim that the unique mode of (9) is 2 if and only if β
(g1)
1 < φ(p) =

1−2p
1−3p

. Since p > 2/3, 1 − 2p < 0 and 1 − 3p < 0. Hence, β
(g1)
1 < 1−2p

1−3p

becomes β
(g1)
1 (1 − 3p) > 1 − 2p, which is equivalent to Pr (s1 + s3 = 2) >
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Pr (s1 + s3 = 1). Since 0 is not a mode of (9), the claim follows. By analogous
arguments, it can be shown that the unique mode of (9) is 1 if and only if

β
(g1)
1 > φ(p).17

Let g1 = 3. From (5), s1 and s3 take value 1 with probabilities β
(3)
1 and p,

respectively. Hence, player 2’s subjective probability distribution on s1 + s3
is: Pr (s1 + s3 = 0) = (1 − β(3)1 )(1 − p), Pr (s1 + s3 = 1) = (1 − β(3)1 )p +

β
(3)
1 (1 − p) and Pr (s1 + s3 = 2) = β

(3)
1 p. Properly accounting for the fact

that, if (1− β
(3)
1 ) is relabelled by β̂1, we get (9), the proof follows. �

Proof of Proposition 2

We just need to calculate player 2’s loss minimizing signal conditional on
her guess, given the common belief β

(g1)
1 .

Let g1 = 3. By (6): (i) π
(3,1)
2 (3) = β

(3)
1 p > π

(3,0)
2 (3) = 0. Hence, β

(3,3)
2 =

µ2(3, 3). (ii) π
(3,0)
2 (2) = β

(3)
1 p > π

(3,1)
2 (2) = β

(3)
1 (1−p)+(1−β

(3)
1 )p if and only if

β
(3)
1 > p

3p−1
. Hence, if β

(3)
1 > p

3p−1
(β
(3)
1 < p

3p−1
), β

(3,2)
2 = 1−µ2(3, 2) (β

(3,2)
2 =

µ2(3, 2)). (iii) π
(3,0)
2 (1) = β

(3)
1 (1−p)+(1−β

(3)
1 )p > π

(3,1)
2 (1) = (1−β

(3)
1 )(1−p).

Hence, β
(3,1)
2 = 1− µ2(3, 1). (iv) π

(3,0)
2 (0) = (1− β

(3)
1 )(1− p) > π

(3,1)
2 (0) = 0.

Hence, β
(3,0)
2 = 1− µ2(3, 0).

Let g1 < 3. By (6): (i) π
(g1,1)
2 (3) = (1− β

(g1)
1 )p > π

(g1,0)
2 (3) = 0. Hence,

β
(g1,3)
2 = µ2(g1, 3). (ii) π

(g1,0)
2 (2) = (1 − β

(g1)
1 )p > π

(g1,1)
2 (2) = β

(g1)
1 p + (1 −

β
(g1)
1 )(1− p) if and only if β

(g1)
1 < 1−2p

1−3p
. Hence, if β

(g1)
1 < 1−2p

1−3p
(β
(g1)
1 > 1−2p

1−3p
),

β
(g1,2)
2 = 1 − µ2(g1, 2) (β

(g1,2)
2 = µ2(g1, 2)). (iii) π

(g1,0)
2 (1) = β

(g1)
1 p + (1 −

β
(g1)
1 )(1 − p) > π

(g1,1)
2 (1) = β

(g1)
1 (1 − p). Hence, β

(g1,1)
2 = 1 − µ2(g1, 1). (iv)

π
(g1,0)
2 (0) = β

(g1)
1 (1− p) > π

(g1,1)
2 (0) = 0. Hence, β

(g1,0)
2 = 1− µ2(g1, 0). �

Proposition 3 Let γ3 be the behavioral strategy followed by player 3.

1. If g1 < 3 and g2 = 3, then

θ
(g1,g2,s3)
3 =





γ
(g1,g2,s3)
3 (s3) if β

(g1,g2)
2 < 1

2
and β

(g1)
1 > φ−1(β

(g1,g2)
2 )

γ
(g1,g2,s3)
3 (s3 + 2) if β

(g1,g2)
2 > 1

2
and β

(g1)
1 < φ(β

(g1,g2)
2 )

γ
(g1,g2,s3)
3 (s3 + 1) if

{
β(g1,g2)2 ≤ 1

2
and β(g1)1 < φ−1(β(g1,g2)2 )

or β
(g1,g2)
2 ≥ 1

2
and β

(g1)
1 > φ(β

(g1,g2)
2 )

17Hence, if β
(g1)
1 = φ(p) , (9) has two modes: 1 and 2.
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2. If g1 < 3 and g2 < 2, then

θ
(g1,g2,s3)
3 =





γ
(g1,g2,s3)
3 (s3) if β

(g1,g2)
2 > 1

2
and β

(g1)
1 > 1− φ(β

(g1,g2)
2 )

γ
(g1,g2,s3)
3 (s3 + 2) if β

(g1,g2)
2 < 1

2
and β

(g1)
1 < 1− φ−1(β

(g1,g2)
2 )

γ
(g1,g2,s3)
3 (s3 + 1) if

{
β
(g1,g2)
2 ≥ 1

2
and β

(g1)
1 < 1− φ(β

(g1,g2)
2 )

or β(g1,g2)2 ≤ 1
2
and β(g1)1 > 1− φ−1(β(g1,g2)2 )

3. If g1 < 3 and g2 = 2, then θ
(g1,g2,s3)
3 coincides with case 1. if β

(g1)
1 > φ(p)

and coincides with case 2. if β
(g1)
1 < φ(p).

4. If g1 = 3 and g2 = 3, then

θ
(g1,g2,s3)
3 =





γ
(g1,g2,s3)
3 (s3) if β

(g1,g2)
2 < 1

2
and β

(g1)
1 < 1− φ−1(β

(g1,g2)
2 )

γ(g1,g2,s3)3 (s3 + 2) if β
(g1,g2)
2 > 1

2
and β(g1)1 > 1− φ(β(g1,g2)2 )

γ
(g1,g2,s3)
3 (s3 + 1) if

{
β
(g1,g2)
2 ≤ 1

2
and β

(g1)
1 > 1− φ−1(β

(g1,g2)
2 )

or β
(g1,g2)
2 ≥ 1

2
and β

(g1)
1 < 1− φ(β

(g1,g2)
2 )

5. If g1 = 3 and g2 < 2, then

θ
(g1,g2,s3)
3 =





γ
(g1,g2,s3)
3 (s3) if β

(g1,g2)
2 > 1

2
and β

(g1)
1 < φ(β

(g1,g2)
2 )

γ
(g1,g2,s3)
3 (s3 + 2) if β

(g1,g2)
2 < 1

2
and β(g1)1 > φ−1(β(g1,g2)2 )

γ
(g1,g2,s3)
3 (s3 + 1) if

{
β
(g1,g2)
2 ≥ 1

2
and β

(g1)
1 > φ(β

(g1,g2)
2 )

or β
(g1,g2)
2 ≤ 1

2
and β

(g1)
1 < φ−1(β

(g1,g2)
2 )

6. If g1 = 3 and g2 = 2, then then θ
(g1,g2,s3)
3 coincides with case 4. if

β
(g1)
1 < 1− φ(p) and coincides with case 5. if β

(g1)
1 > 1− φ(p).

Proof. Let z ∈ [0, 1] and y ∈ [0, 1] be the subjective probabilities that
player 3 assigns to the events s1 = 0 and s2 = 1, respectively. Then, player
3’s subjective probability distribution on s1 + s2 is as follows:

Pr (s1 + s3 = 0) = z(1− y)

Pr (s1 + s3 = 1) = zy + (1− z)(1− y) (10)

Pr (s1 + s3 = 2) = (1− z)y

After some algebra, we get that:

i) If y < 1
2
and z > 1−y

2−3y
≡ φ−1(y), the unique mode of (10) is 0.

ii) If y > 1
2
and z < 1−2y

1−3y
≡ φ(y), the unique mode of (10) is 2.
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iii) If either y ≤ 1
2
and z < φ−1(y) or y ≥ 1

2
and z > φ(y), the unique mode

of (10) is 1.

Let g1 < 3. By (5), z = β
(g1)
1 . If g2 = 3, by Proposition 2, y = β

(g1,g2)
2 .

Substituting z and y in i)-iii) we prove case 1. If g2 < 2, by Proposition 2,

y = 1−β
(g1,g2)
2 . Substituting z and y in i)-iii), we prove case 2. To prove case

3, we just need to note that, if g2 = 2, then, by Proposition 2, if β(g1)1 > φ(p),

then y = β
(g1,g2)
2 whereas, if β

(g1)
1 < φ(p), then y = 1− β

(g1,g2)
2 .

Let g1 = 3. By (5), z = 1−β
(g1)
1 . If g2 = 3, by Proposition 2, y = β

(g1,g2)
2 .

Substituting z and y in i)-iii) we prove case 4. If g2 < 2, by Proposition

2, y = 1 − β
(g1,g2)
2 . Substituting z and y in i)-iii) we prove case 5. Finally,

to prove case 6, we just need to note that, if g2 = 2, then, by Proposition
2, if β

(g1)
1 < 1 − φ(p), then y = β

(g1,g2)
2 whereas, if β

(g1)
1 > 1 − φ(p), then

y = 1− β
(g1,g2)
2 .
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