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A Little Behavioralism
Can Go a Long Way

by Ken Binmore and Joe Swierzbinski

1. Economic Man Refuted?

There is a school of behavioral economists who have popularized the notion that
the neoclassical paradigm of homo economicus is refuted by the experimental
evidence. We agree that the idea that human behavior can always be modeled
as the rational optimization of money rewards in each and every context is off
the wall, but who would want to defend such a wild claim? To make their case,
behavioral economists need to address the more moderate claim that people
often learn to play like income maximizers—given sufficient time and adequate
incentives.

It isn’t enough to look only at the behavior of inexperienced subjects. No-
body denies that they are unlikely candidates for the role of economic man. Nor
is it enough to keep pointing at unusual games like the Ultimatum Game, in
which subjects do not seem to adjust their behavior much as they gain experi-
ence. Indeed, it seems palpably dishonest to harp continually on such games,
while simultaneously turning a blind eye to the very much larger literature in
which laboratory subjects are reported as converging on the Nash equilibria of
games with money payoffs.

Why do we see apparently anomalous behavior in the class of games to
which behavioral economists restrict their attention? This paper argues that the
explanation lies partly in the fact that behavioral economists are some twenty
years behind the times in thinking that economic man must solve games using
the principle of backward induction, whereas advances in evolutionary game
theory have shown that it is unwise to discard any Nash equilibrium whatever
without close attention to the context. The paper then goes on to explore
the extent to which the set of Nash equilibria in some games that behavioral
economists regard as canonical can be expanded by deviating only slightly from
the income-maximizing hypothesis.

The same approach is then applied to an experiment of our own on the Ru-
binstein bargaining game [20] with unequal discount rates. A full discussion of
the experimental details and an analysis of the results is given elsewhere (Bin-
more et al [11]). The results are supportive of the pure Rubinstein prediction
in some contexts but not in others.

The laboratory successes enjoyed by the Rubinstein theory this experiment
and others (Binmore et al [9, 8], Camerer [12]) may seem paradoxical to those
who believe that the theory stands or falls on whether human subjects commonly
use backward induction in the laboratory. However, it should be noted that
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the unique subgame-perfect equilibrium of Rubinstein’s model also happens to
be a Nash equilibrium with stationary expectations. One can therefore find
an evolutionary explanation for why subjects sometimes find their way to the
Rubinstein prediction that does not require defending the discredited principle
of backward induction.

We pursue this evolutionary explanation here by applying it to the contexts
in which the pure Rubinstein theory is not very successful in predicting the
behavior of laboratory subjects. For these contexts, the Rubinstein bargaining
model with unequal discount factors needs to be added to the class of anomalous
cases identified by behavioral economists. Our purpose is to observe that the
anomalies can largely be accommodated by assuming that some fraction of the
population of subjects are slow in learning that the fair outcome on which they
may have been conditioned in the past isn’t adapted to the game they are
playing in the laboratory.

In summary, we believe that behavioral economists are right to argue that
the income-maximizing hypothesis for experienced and adequately incentified
subjects needs to be modified to accomodate anomalous cases, but that it is
unproven that there is a need for the modifications to be large in the kind of
bargaining situations we have studied. The issues are pursued at greater length
in a forthcoming book (Binmore [5]), on chapter 8 of which the current paper
is based..

2. Ultimatum Game

When subjects first encounter a new game in the laboratory, we do not believe
that they commonly recapitulate the principles of game theory in their heads
and play accordingly. We therefore do not believe that the subjects are actively
optimizing relative to any utility function whatever, whether other-regarding or
selfish. We think instead that inexperienced subjects respond to the framing of
the experiment by playing according to whatever social norm is triggered by the
hints and cues with which they are presented. Game theory is relevant to such
social norms, because we believe they evolved in the first place as equilibrium
selection devices for the repeated games of everyday life.

But human beings are not helpless robots, irrevocably programmed by their
culture with fixed behaviors. We vary in our flexibility when confronted with
new situations, but most of us can and will learn if given the opportunity, and
the vast majority of relevant experiments confirm that subjects move towards a
Nash equilibrium—calculated with money payoffs—of the laboratory game they
are playing, provided that adequate incentives and sufficient time for learning
are built into the experimental design.

However, there is a minority of anomalous cases in which subjects do not shift
much or at all from their initial behavior. How is such behavior to be explained?
Behavioral economists offer the explanation that they are already at or close to
a Nash equilibrium of a game in which their payoffs are not measured in money,
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but in units of utility that take into account of the welfare of other players or
other social considerations. We agree that one can explain the anomalous cases
by arguing that the players are already at or close to a Nash equilibrium, but we
see no need to modify the assumption that subjects maximize expected money
by very much in order to make this explanation work.

The reason that one doesn’t have to move far (or sometimes at all) from
the income-maximizing hypothesis to explain the anomalous cases is that the
games involved typically have large numbers of Nash equilibria that behavioral
economists neglect to take into account. If the social norm that is triggered
by the way an experiment is framed happens to coordinate the behavior of
the subjects on or near one of these neglected equilibria, then any learning that
follows will have little effect. The subjects will not be led away to a distant Nash
equilibrium, because they are already in the basin of attraction of a nearby Nash
equilibrium.

The leading anomalous case is the Ultimatum Game. In the Ultimatum
Game, a sum of money can be divided between Alice and Bob if they can agree
on a division. The rules are that Alice proposes a division and that Bob is
then restricted to accepting or refusing. If the subgame-perfect equilibrium
(in which Bob acquiesces when Alice demands almost all the money) were the
only Nash equilibrium of the game, then the fact that Alice’s modal offer in
the laboratory is a fifty:fifty split would be a serious challenge to the income-
maximizing hypothesis for experienced players, since this conclusion seems to
be robust when the amount of money is made large or repeated play (against a
new opponent each time) is allowed.

However, as with other anomalous cases, the Ultimatum Game actually has
many Nash equilibria. In fact, any split of the money whatsoever is a Nash
equilibrium outcome on the income-maximizing hypothesis. Not only does the
Ultimatum Game have many Nash equilibria, but computer simulations show
that simple models of adaptive learning can easily converge on one of the infinite
number of Nash equilibria that are not subgame-perfect (Binmore, Gale and
Samuelson [6]).

However, this isn’t the point of presenting the computer simulation illus-
trated in Figure 1, which was one of a large number of simulations carried out
for Binmore, Gale and Samuelson [6]. In this simulation, the original sum of
money is $40 and the simulation begins with Alice offering Bob about $33, leav-
ing $7 for herself. One has to imagine that the operant social norm in the society
from which Alice and Bob are drawn selects this Nash equilibrium outcome from
all those available when ultimatum situations arise in their repeated game of
life. This split (like any other split) is also a Nash equilibrium outcome in the
one-shot Ultimatum Game.

The figure shows our slightly perturbed replicator dynamic leading the sys-
tem away from the vicinity of this (7, 33) equilibrium. The system eventually
ends up at a (30, 10) equilibrium. The final equilibrium isn’t subgame-perfect
(where the split would be (40, 0)), but this fact isn’t particularly germane. What
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Figure 1: Simulated adaptive learning in the Ultimatum Game. The upper dia-
gram shows the evolution over time of the offers a large population of player I’s
would make to player II if chosen to play. The diagram on the right shows the evo-
lution over time of the acceptance levels of a corresponding population of player
II’s. A slightly perturbed version of the replicator dynamics is simulated whose
parameters have been chosen to make the system converge on a 30:10 split of the
$40 available. This takes 5,000 or so iterations when the system is started close to
a 7:33 split. (The suddeness of the eventual transition between the Nash equilib-
ria at 7:33 and 30:10 is illusory as the number of iterations during the transition
exceeds by far those in any Ultimatum Game experiment.)
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is important here is that it takes some 5,000 periods before our simulated adap-
tive process moves the system any significant distance from the vicinity of the
original (7, 33) equilibrium. This enormous number of periods has to be com-
pared with the 10 or so commonly considered “ample” for adaptive learning to
take place in the laboratory.

One might summarize these remarks by saying that testing the Ultimatum
Game isn’t an ideal way to go about exploring the extent to which an income-
maximizing version of game theory works. Any efficient deal corresponds to a
Nash equilibrium that a social norm operating in the society from which the
subjects are drawn might render focal. A suitably perturbed adjustment process
might eventually lead the subjects elsewhere, but the number of iterations this
is likely to take would not be easy to replicate in a laboratory.

3. Public Goods Games with Punishment

In games like the Prisoners’ Dilemma that can be interpreted as modeling the
private provision of public goods, it is uncontroversial that most experienced
subjects in laboratory experiments contribute little or nothing. However, Fehr
and Gächter’s [13] show that the situation changes when free riders can be
punished after the contribution phase is over.

In their modified experiment, the subjects can pay a small amount to reduce
the payoff of a free rider of their choice by a substantially larger amount. The
opportunity to punish free riders in this way is actually used by the subjects,
although an income-maximizer can gain nothing from such behavior. Contri-
butions correspondingly rise progressively until most subjects are contributing
a substantial amount. The conclusion drawn is that the subjects have a liking
for punishing defectors built into their utility functions.

It is doubtless true that most people are disposed to punish anti-social be-
havior even when there is no money to be made out of this practice. But how
firm is this tendency? Will more experience teach people that they gain nothing
from punishing malefactors whom they will never meet again? How much of a
loss will people endure before giving up the opportunity to punish?

Fehr and Gächter’s [13] experiment is uninformative, because they overlook
the fact that attributing only the trace of a liking for punishing bad behavior
to the subjects is enough to create a Nash equilibrium in their game in which
everybody contributes maximally (Steiner [22]). Each player’s strategy in this
equilibrium calls only for the worst free rider to be punished. Since all players
punish the worst free rider, their share of the cost of providing an adequate
disincentive becomes tiny. However, the assumption that players are prepared
to pay this tiny cost is adequate to support the equilibrium, because nobody
wants to be the worst free rider.

4. A Gift Exchange Game
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An experiment of Fehr et al [15, 14] is based on an idealized competitive labor
market in which the workers have the opportunity to reward employers who
pay above the competitive rate by putting in more effort. Subjects representing
workers turn out to reward generous employers with more effort, although the
employers have no way of identifying workers who shirk with a view to pun-
ishing them in the future. The result is typical of “gift-exchange” experiments
that are offered in support of the hypothesis that people have preferences that
incorporate a positive liking for reciprocating.

In a simplified version of the kind of labor market studied in this literature,
there are m employers and n workers, where m < n. Each of N periods begins
with each employer independently publishing either a high wage or a low wage
for all to see. The workers get a negative payoff from being unemployed, and
so they compete to get employed. Each worker has an equal chance, and so
the probability that any single worker finds employment in any given period is
m/n. The matchings are entirely anonymous, so that long-term relationships
between an employer and a worker are impossible.

A worker on a low wage automatically shirks. But a worker on a high wage
can choose high or low effort. Both members of a matched pair receive a payoff
of s if the wage is low (and so the worker shirks). Both receive b if the wage is
high and the worker puts in high effort. The worker receives a payoff of 1 and
the employer a payoff of 0 if the wage is high and the worker puts in low effort.
We assume that 0 < s < b < 1.

All Nash equilibria of this finitely repeated game require that the employer
offers a low wage along the equilibrium path, but matters change if the game
is perturbed slightly. To this end, we assume that each player is independently
strategic with probability 1− π, or a reciprocating robot with probability π. A
reciprocating robot makes a high offer as an employer and puts in high effort
when receiving a high wage as a worker—until he observes that anyone at all
has deviated from this behavior, after which he always plays low . The strategic
players do not know the value of π, but update their subjective probability
distribution for this parameter as play proceeds.

For small values of π and large enough values of N , there are Nash equilibria
of this finitely repeated game in which everybody plays high until near the end
of the game. Cooperation is sustained by the contagion mechanism identified by
Kandori [16] for infinitely repeated games. The game is only finitely repeated,
but the introduction of a small fraction of reciprocating robots permits a similar
cooperating equilibrium to be sustained. As in the gang-of-four paper of Kreps
et al [17], strategic players find it expedient to mimic the robots until it no
longer matters whether a robot is provoked into precipitating a breakdown.

A number of authors, including Reinhard Selten, [21] have shown that the
folk theorem often still works in the laboratory when the number of repetitions
is finite. The fact that cooperation tends to break down in the final rounds of
these experiments adds some support to the relevance of the preceding model,
since the same holds true in the experiment of Fehr et al [15], with 16 out of 26
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workers putting in only the minimum effort in the tenth and final round.

5. Bargaining with Unequal Discount Rates

An experiment on Rubinstein’s [20] bargaining model with unequal discount
rates reported elsewhere supports the hypothesis that most subjects optimize
to a degree that would eventually be sufficient to shift a group of experimental
subjects to the Rubinstein solution if all members of the group were to behave in
the same way (Binmore, Swierzbinski and Tomlinson [11]). But some subjects
presumably do not learn so quickly as others. Perhaps some do not learn at
all, but remain fixated on operating what they regard as a fair social norm. If
we perturb Rubinstein’s model by writing such behavioral possibilities into his
scenario, what impact will this have on the predicted outcome?

In seeking an answer to this question, we focus on models in which a fraction
of the population of possible players are initially conditioned on an outcome f
of the bargaining problem, which they regard as fair or focal. However, their
behavior is not inflexible. After observing a refused proposal, they sometimes
switch to playing strategically with some exogenously determined probability.
We find that the existence of such a group can result in significant perturba-
tions of the Rubinstein outcome—even when all the conditioned players will
eventually end up playing in the same way as the strategic players.

5.1. Experimental Background

This section briefly reviews some relevant experimental evidence.

Subgame perfection? The experimental evidence on finite bargaining games
with alternating offers is firmly hostile to the idea that laboratory subjects use
backward induction in deciding how to play (Camerer [12]). Even when it is
assumed that the players care about their opponent’s payoffs as well as their
own, backward induction performs badly (Binmore et al [7]).

It is therefore commonly thought that Rubinstein’s use of the concept of
a subgame-perfect equilibrium in analyzing his infinite-horizon model makes
his theorem irrelevant to the behavior of real people. However, in the case
of equally patient players, it turns out that the Rubinstein theory does rather
well in predicting experimental outcomes when compared with more traditional
bargaining approaches (Binmore et al [9, 8]). One possible explanation is that
the conclusion of Rubinstein’s theorem doesn’t change if we replace the idea of a
subgame-perfect equilibrium by that of a stationary expectations equilibrium—
to which subjects may perhaps find their way in repeated play using some kind
of myopic adjustment procedure, in which tomorrow is always treated as though
it will resemble today.
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Learning? Although the experimental evidence that laboratory subjects can
adjust their behavior over time to the strategic realities of most simple games
is overwhelming, the case of finite bargaining games with alternating offers is
more problematic, with nearly all experiments finding little or no evidence of
experience changing the subjects behavior (Camerer [12]).

However, in the bargaining games we have studied experimentally, we have
always found evidence of learning—sometimes very rapid learning—provided
that the feedback provided is sufficiently rich. A possible explanation is that
simple models of trial-and-error adjustment in the Ultimatum Game (and so
presumably in similar games) predict that any learning is likely to be painfully
slow (Binmore et al [6], Roth and Erev [19]).

Atypical subjects. A particularly strong body of evidence is presented by
Ledyard [18] in his survey of a very large number of games like the Prisoners’
Dilemma that model the private provision of public goods. Novices cooperate
somewhat more than half the time, but the frequency of cooperation declines
as the subjects gain experience, until about 90% of the subjects are defecting.
However, the remaining 10% of the subject pool is of very considerable interest,
especially since we find a similar proportion of subjects in our own bargaining
experiments who seem impervious to strategic considerations (Binmore et al
[8]).

A recent experiment. In our most recent experiment, subjects played a
variant of Rubinstein’s [20] bargaining game in which the next proposer after
a disagreement is chosen at random (Binmore et al [11]). The disagreement
point is located at the origin. The feasible set resembles that of Figure 2. The
subjects played a total of 24 games, sometimes as player I and sometimes as
player II.

The subjects first knowingly played 8 “practice” rounds against a computer
programmed to try to condition them either on the approximately utilitarian
outcome (8, 2), or on the equal-increments or Rawlsian outcome (4, 4). They
then knowingly played 16 times against other subjects in their group, chosen
unpredictably anew at the start of each game. Our intention was to study the
extent to which the stability of any focal points established by the conditioning
is related to the location of the Rubinstein solution (Binmore et al [10]).

When player I’s discount factor is δ1 = 0.9 and player II’s is δ2 = 0.8 in the
bargaining problem of Figure 2, the utilitarian outcome (8, 2) is the Rubinstein
solution. When the players’ discount factors are exchanged, the Rawlsian out-
come (4, 4) becomes the Rubinstein solution. Introducing one or other of these
pairs of discount factors allows four treatments to be distinguished:

Treatment 1 Subjects conditioned on (4, 4). Rubinstein solution (4, 4).

Treatment 2 Subjects conditioned on (8, 2). Rubinstein solution (4, 4).
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Figure 2: A simplified version of the feasible set used in Binmore
et al’s [11] experiment on Rubinstein’s Alternating Offers Game.

Treatment 3 Subjects conditioned on (4, 4). Rubinstein solution (8, 2).

Treatment 4 Subjects conditioned on (8, 2). Rubinstein solution (8, 2).

We succeeded in conditioning the subjects on (4, 4), but we only succeeded in
persuading the subjects that player I should get something more than 7 when
our target was (8, 2). (The computer randomized over a small range centered
on (8, 2). The subjects responded by moving close to an optimal response to
this behavior.)

Some of our results are shown in Figures 3 and 4. The horizontal axis
shows the 16 games played against a human opponent. The plus signs indicate
that player I made the first proposal in a game. The vertical axis shows the
mean monetary payoff to player I. The points marked with a cross show the
mean payoff to player I in the final agreement, discounted to time zero (in
each game). The stars indicate the mean amount assigned to player I by the
opening proposal. The circles show the predictions of a myopic best-reply model.
(Responders were shown the outcome of six recent final agreements discounted
to the next period that they could use in estimating a best reply.) The squares
show the predictions of a version of the myopic best-reply model which has been
perturbed by introducing a small bias towards the equal-split outcome (4, 4).

The fact that the mean initial proposals always recognize the strategic ad-
vantage of the proposer suggests that the Rubinstein approach is basically on
track, but the steady movement toward the Rubinstein solution in Treatment
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2 is absent (or only very slight) in Treatments 3 and 4. Why does player I
not make more aggressive proposals in Treatment 3, and so further shift the
trajectory of final agreements toward the Rubinstein solution of (8, 2)? Why
again does the trajectory in Treatment 4 not shift from around (7, 2 1

2
) toward

the Rubinstein solution of (8, 2)?
We do not see how it is possible to answer such questions in our experiment

simply by attributing social preferences to the subjects that lead them to play
fair. The data shows that the subjects’ behavior varies so much over time
that any such preferences would sometimes need to be malleable to an extent
that would render worthless any attempt to describe the subjects’ behavior
exclusively in such terms. Their conditioning, their role in the game, and their
experience of previous play evidently all matter a great deal. In particular,
Treatment 2 shows clear evidence of learning—not only within each game—but
between games as well.

On the other hand, fairness considerations are clearly relevant to our data—
as they are in all bargaining experiments of which we are aware. However, there
is an alternative explanation for why people sometimes play fair to the claim
that a strong propensity for such behavior is frozen into their preferences. It is
that fairness norms evolved as equilibrium selection devices (Binmore [3, 4]). It
is this alternative explanation that motivates the model explored in this paper.

6. Perturbing Rubinstein’s Model

In Rubinstein’s [20] Alternating Offers Game, two players alternate in proposing
how to split a shrinking cake. We model the cake at time 0 as the set

X0 = {x ∈ IR2 : x2 ≤ g(x1) } ,

where g : IR → IR is strictly decreasing and concave. Its inverse function is de-
noted by h : IR → IR. The set of Figure 2 will be used as a canonical example.
This is really the special case when the boundary of X0 is x1 + 2x2 = 12, since
the chunk cut away from this set in Figure 2 is irrelevant to any calculations—
although not to focal point considerations, as the midpoint (6, 3) on the hy-
potenuse would clearly have strong focal properties if the cutaway chunk were
present.

In order that our subjects need only look one move ahead in computing a
stationary expectations equilibrium, our experiment modified the rules of Ru-
binstein’s game so that the new proposer is always decided by the fall of a fair
coin. This change does not alter Rubinstein’s conclusions in any essential way.

At each time t = 0, 1, 2, . . . that the modified game is still in progress, an
independent chance move chooses player I or II with equal probability to act as
proposer or responder at this time. The proposer then makes a demand that the
responder can accept or refuse. If the demand is accepted, the proposer receives
his demand, and the responder is assigned whatever remains of the cake.
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Figure 3: Data from Treatments 1 and 2 in Binmore et
al’s [11] experiment on a Rubinstein bargaining game.
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Figure 4: Data from Treatments 3 and 4 in Binmore et
al’s [11] experiment on a Rubinstein bargaining game.
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The shrinkage of the cake is modeled by assigning discount factors δ1 and
δ2 to the two players. After a refusal at time t, the cake shrinks from Xt to

Xt+1 = {x ∈ IR2 : (x1δ1, x2δ2) ∈ Xt } .

Since we assume 0 < δi < 1, the cake shrinks to zero if all proposals are refused.
The game has a unique subgame-perfect equilibrium (Binmore [2]). In equi-

librium, the expected payoffs to the two players in our canonical example are

r1 =
12(1 − δ2)
2 − δ1 − δ2

; r2 =
6(1 − δ1)

2 − δ1 − δ2
. (1)

Such computations are eased by noting that the answer turns out to be a sta-
tionary expectations equilibrium. Since a proposer will always make an offer
(either δ1r1 or δ2r2) that leaves the responder indifferent between accepting and
refusing, we merely need to solve the equations:

2r1 = h(δ2r2) + δ1r1 ,

2r2 = g(δ1r1) + δ2r2 .

Robots. Abreu and Gul [1] have studied the Rubinstein bargaining model in
the case when it is common knowledge that there is some probability that an
opponent will turn out to be a robot who always plays “fair” regardless of the
strategic situation. As in the gang-of-four model (Kreps et al [17]), they find
that a rational player will then sometimes pretend to be such a robot until some
randomly determined number of proposals have been refused.

There are two reasons why we do not appeal to the Abreu-Gul model in
seeking to make sense of our experimental data. The first is that it seems
unlikely that their equilibrium could easily be learned by real people under
laboratory conditions. The second is that our experience suggests that even
strategically unresponsive subjects are a lot less inflexible than the robots of
their model. Our own simpler model seeks to make virtues out of these problems.

Instead of a single chance move that decides whether a player will be a robot
or a strategist at the start of the game, we introduce independent chance moves
immediately following each refusal that permanently transform a player who has
been a robot hitherto into a strategist from now on with probability 1 − θ < 1.
In this way, we hope to capture in a crude way the fact that subjects who have
been conditioned to play fair have the capability of learning to behave otherwise.
If we keep things simple by always assigning the same belief to a newly created
strategist as any other strategist would have on reaching the same point in the
game, we simultaneously create a game with a stationary structure. Stationary
expectations equilibria of this game then have a chance of being learned by
subjects who operate some kind of myopic optimization process.

This specification leaves open the initial probability φ > 0 that a player is a
robot. In the calculations that follow, we take φ = θ to keep things simple (but
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see Section 7). It also leaves open the definition of a robot, which we take to be
a player who has been conditioned to believe that the correct proposal is some
efficient point f of X0. A robot in the role of player I therefore always demands
f1 when proposing, and accepts f2 or better when responding. A robot in the
role of player II always demands f2 when proposing, and accepts f1 or better
when responding.

Types of equilibrium. The plan is to investigate equilibria in which strate-
gists always accept proposals made in equilibrium by strategists. Any refusal
therefore signals to a strategist that the opponent is currently a robot, who
will remain a robot only with probability θ in the next round. We can there-
fore employ the same methodology used to characterize stationary expectations
equilibria in the unperturbed model. The only difference is that now a proposer
sometimes has two possibly optimal demands to compare: a larger demand that
makes a strategic responder indifferent between accepting and refusing, and a
possibly smaller demand that will also be accepted by a robot responder.

We distinguish three types of equilibrium:

Rubinstein equilibria: A strategist always makes a demand that renders an-
other strategist indifferent between accepting and refusing. In equilibrium,
strategists always accept.

Fair equilibria: A strategist always makes the fair demand. In equilibrium,
strategists always accept.

Hybrid equilibria: A strategist plays as in a Rubinstein equilibrium or as in
a fair equilibrium, depending on whether assigned the role of player I or
player II. In equilibrium, strategists always accept.

In designing our experiment, we did not contemplate equilibria other than
those of the Rubinstein type, nor did we realize that the existence of a robot
fringe could significantly alter the players’ behavior in such equilibria. We now
think that only the results in Treatment 2 look like the subjects are moving
toward an equilibrium of the Rubinstein type. In the case of Treatment 1, we
should have been ready to see a fair equilibrium with f = (4, 4). In Treatments
3 and 4, we should have been ready to consider hybrid equilibria.

The point here is not to argue that one or other of these equilibria should be
used to predict the data. We think that the modified myopic best-reply model
used in Binmore et al [11] is to be preferred for this purpose, because it takes
better account of the fact that even strategically minded folk need to learn to
play equilibria. The point is rather that critics who would like to argue that
the Rubinstein theory is altogether refuted by the data need to look harder at
possible variants of the theory before they settle on such a draconian conclusion.
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Rubinstein equilibria. Let r be the payoff pair strategic players expect be-
fore the game begins. We distinguish three cases.

Case 1 : f1 > δ1r1 ; f2 > δ2r2 .

Case 2 : f1 > δ1r1 ; f2 < δ2r2 .

Case 3 : f1 < δ1r1 ; f2 > δ2r2 .

In Case 1, a robot always refuses a strategist’s offer of δ2r2 or δ1r1. When a
strategic player I proposes, he therefore expects (1− θ)h(δ2r2) + θδ1r1. Strate-
gists always accept offers made by strategists, and so expect θf1 + (1 − θ)δ1r1

when responding as player I. Similar considerations apply to strategic player
IIs. The characterizing equations for a Rubinstein equilibrium in Case 1 are
therefore:

2r1 = (1 − θ)h(δ2r2) + θf1 + δ1r1 ,

2r2 = (1 − θ)g(δ1r1) + θf2 + δ2r2 ,

These equations apply if and only if:

(1 − θ)h(δ2r2) + θδ1r1 ≥ f1 ,

(1 − θ)g(δ1r1) + θδ2r2 ≥ f2 ,

since it would not otherwise be optimal for strategists to tolerate their offers
being refused by robots.

In Case 2, a robot in the role of player II accepts a a strategist’s offer
of δ2r2. When a strategic player I proposes, he therefore expects h(δ2r2). A
strategic player II refuses a fair offer, and so expects δ2r2 when responding. The
characterizing equations for a Rubinstein equilibrium in Case 2 are therefore:

2r1 = (h(δ2r2) + θf1 + (1 − θ)δ1r1 ,

2r2 = (1 − θ)g(δ1r1) + +(1 + θ)δ2r2 .

These equations apply if and only if:

h(δ2r2) ≥ θf1 + (1 − θ)δ1r1 .

(1 − θ)g(δ1r1) + θδ2r2 ≥ f2 ,

Case 3 is the same as Case 2, except that the roles of players I and II are
reversed.

Fair equilibria. Fair equilibria can only exist in Case 1, because then r = f .
The inequalities that need to be satisfied are:

f1 ≥ (1 − θ)h(δ2r2) + θδ1r1 ,

f2 ≥ (1 − θ)g(δ1r1) + θδ2r2 .
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These inequalities always hold when f coincides with the Rubinstein outcome
in the unperturbed game and θ ≥ 1

2
. (There are no other fair equilibria in our

canonical case when θ = 1
2
.)

In particular, if θ ≥ 1
2

and f = (4, 4), it is an equilibrium in our Treatments
1 and 2 (δ1 = 0.8 and δ2 = 0.9) for everyone always to propose and accept the
outcome f . The same holds in our Treatments 3 and 4 (δ1 = 0.9 and δ2 = 0.8)
with θ ≥ 1

2
and f = (8, 2).

Hybrid equilibria. We omit the characterization of hybrid equilibria, since
it will now be evident how this proceeds.

Existence. In our canonical example, computerized calculations reveal that
one of these three types of equilibria exists for all values of θ (0 ≤ θ ≤ 1) and
all values of f (0 ≤ f1 ≤ 12). There are occasionally multiple equilibria, but
mostly only one of the three types of equilibrium exists for each pair (θ, f).

When the two parameters θ and φ are not equal, it becomes more compli-
cated to characterize the equilibria. However, computerized calculations again
show that one of the three types of equilibrium always exists, except for a few
patches in the parameter space. The equilibrium is again typically unique.

7. What do Perturbed Equilibria Look Like?

Figures 5 and 6 show equilibrium behavior in perturbed versions of Rubinstein’s
model. They are directly comparable with the experimental data illustrated in
Figures 3 and 4. In particular, the choice of who makes the first proposal in
each game is exactly the same.

The firm lines in Figures 5 and 6 join points that show the average money
payoff to player I in the final agreement, discounted to time zero (in each game).
The broken lines join points which show the average money payoff proposed for
player I at the outset of each game.

Notice that Treatment 1 in Figure 5 is a fair equilibrium in which both the
firm and the broken graph sit on top of each other. Treatment 2 in Figure 6
is a Rubinstein equilibrium. Treatment 3 in Figure 5 is a hybrid equilibrium.
Treatment 4 in Figure 6 is begins as a hybrid equilibrium, but switches to a Ru-
binstein equilibrium when the remaining fraction of robots becomes sufficiently
small.

The parameter value φ = 0.5 (which gives the fraction of robots at the begin-
ning of the game) was chosen to correspond roughly with the fraction of subjects
who begin by cooperating in Prisoners’ Dilemma experiments. The parameter
value ψ = 0.1 (which was taken to be zero in the previous section) is the fraction
of robots who are assumed never to alter their conditioned behavior under any
circumstances. This was chosen to correspond roughly with the fraction of sub-
jects who persist in cooperating in Prisoners’ Dilemma experiments after having
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Figure 5: Equilibrium behavior in a perturbed Rubinstein model for Treat-
ments 1 and 3. The unperturbed Rubinstein outcomes are (4, 4) and (8, 2)
respectively. The parameters of the model are θ = 0.6, φ = 0.5, ψ = 0.1,
and f = (4, 4). Treatment 1 is a fair equilibrium in which nobody ever devi-
ates from proposing or accepting (4, 4). Treatment 3 is a hybrid equilibrium
in which only player II proposes (4, 4).

enjoyed ample opportunity for learning. (The results look much the same with
ψ = 0.) The remaining robots behave as described in the preceding section.

In Treatments 1 and 3, we took f = (4, 4) to reflect the fact that an attempt
was made to condition the subjects on this outcome in the practice rounds. In
Treatments 2 and 4, we took f = (7.5, 2.25) and f = (7, 2, 5) respectively to
reflect the degree of success we enjoyed in seeking to condition the subjects on
the outcome (8, 2). However, we would have done better by taking f = (4, 4)
in all the treatments—as we do in the modified myopic best-reply model that
we fit to the data in Binmore et al [11]. This observation is reflected in the fact
that, although we have made no attempt to fit the current equilibrium model
econometrically to the data, we do better by taking θ = 0.6 in Treatments 1
and 3, and θ = 0.2 in Treatment 2 and 4. Roughly speaking, this means that

18



Figure 6: Equilibrium behavior in a perturbed Rubinstein model for Treat-
ments 2 and 4. The unperturbed Rubinstein outcomes are (4, 4) and (8, 2)
respectively. The parameters of the model are θ = 0.2, φ = 0.5, ψ = 0.1,
with f = (7.5, 2.25) in Treatment 2, and f = (7, 2.5) in Treatment 4. Treat-
ment 2 is a Rubinstein equilibrium . Treatment 4 begins as a hybrid equi-
librium in which only player II proposes f = (7, 2.5), but switches to a Ru-
binstein equilibrium when the fraction of robots becomes sufficiently small.

subjects are assumed to be more reluctant to abandon their conditioning when
f = (4, 4) than when f = (7.5, 2.25) or f = (7, 2, 5).

8. Conclusion

We have argued that anomalous data in bargaining experiments can often be
explained without resorting to the extravagant claim that subjects act as opti-
mizers with a large other-regarding component built into their utility function.
We believe that a better explanation is that subjects are acting in accordance
with a social norm which is adapted to a real-life game that differs from the
game they are playing in the laboratory. When subjects fail to adapt their be-
havior to the laboratory game (with money payoffs) as in a minority of economic
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experiments, we believe that the explanation is often to be found in the fact that
the anomalous games have many Nash equilibria that are commonly overlooked.
The field for such an explanation opens wider if one admits the possibility that
the subjects may have a small other-regarding component built into their util-
ity functions, or if there is some heterogeneity in the speed at which different
subjects learn to adjust their behavior away from whatever social norm they
brought with them into the laboratory.

In the main part of the paper, we explored the latter possibility using a
perturbed version of the Rubinstein bargaining model with unequal discount
rates. We find that the crude prediction of the unperturbed Rubinstein model
must then be replaced by one of a rich variety of equilibria, some of which share
the qualitative features of the available data.

Our general conclusion is that, before critics are entitled to argue that the
income-maximizing hypothesis for experienced subjects should be abandoned in
bargaining games or elsewhere, they first need to ask whether the behavior they
observe is consistent with a neglected Nash equilibrium of the game or with a
Nash equilibrium of some slightly perturbed version of the game.
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