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Abstract

This paper studies, both theoretically and experimentally, frame effects in
the context of public good provision. We apply Prospect Theory to read the
experimental evidence of a Voluntary Contribution Threshold Game which,
depending on the sessions, was framed as a situation in which a) subjects
had to make a costly contribution to gain a common prize or b) they had to
make a costly contribution to avoid to loose it. By contrast with standard
expected utility theory, by which frames have no impact on equilibrium be-
havior, Prospect Theory predicts more contribution in the latter situation.
Our experimental evidence backs up Prospect Theory when the contribution
threshold is high (i.e. the public good is relatively more difficult to achieve).
When contribution threshold is low, expected utility seems more consistent
with the experimental evidence.
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1 Introduction

Free-riding is a pervasive problem in situations where societies have to de-
cide the level of provision of some public good. This is so because public
goods have the feature of being non-excludable. In particular, when we talk
about pure public goods, it is assumed that excludability is only feasible at
an infinite cost. Then governments cannot use rationing by price which im-
plies that a competitive market cannot generate a Pareto efficient amount
of the public good. This is the reason of the so-called free rider problem.
Since any individual perceives that she will benefit from the public good
irrespective of her contribution to finance it, she will have no incentives to
contribute voluntarily. If the public good is to be financed by voluntary
contributions, its level will fall short its efficient level. As an extreme case,
consider a situation in which consumers’ utility functions take a quasilinear
form with respect to a numeraire commodity, and they can be ranked ac-
cording to the marginal benefits they get from consuming the public good.
Assume that the public good is provided by private purchases of the con-
sumers. Then, every individual must decide her own contribution taken
the contributions of the other agents as given. Nash equilibrium entails, in
this extreme situation, that only the individual with the highest marginal
benefit will provide the public good.! The free-rider problem here appears
in a very stark way, since all individuals but the one with the highest val-
uation will free-ride. Obviously, this implies that the resulting amount of
the public good will be far below its inefficient level. This conclusion is
somehow mitigated by the extensive, and extremely robust across a wide
variety of treatment conditions, experimental evidence on the classic Volun-
tary Contribution Mechanism (VCM) protocol. Here we find that subjects
usually set initially a contribution which is halfway between the Pareto-
efficient level and the free-riding level. If the same protocol is repeated
for a finite number of times, average contribution declines over time, but
stays always above the Nash equilibrium level. More efficient results are
usually obtained in experiments which the VCM is modified by introduc-
ing a threshold in the total contribution, below which the public good is
not provided.? These experimental protocols -usually termed as Voluntary
Contribution Threshold Games (VCTG)- have, usually, multiple equilibria.

!See the details in Mas-Colell, Whinston and J. Green [?], Section 11.C.
2See Ledyard [7].



Precisely, all strategy profiles in which a player is pivotal in reaching the
threshold are equilibria of the underlying game.?

Consider now a (slightly) different set-up, in which there is a set of in-
dividuals who are already enjoying some public good. However, they realize
that at some point in the future the existing public good can deteriorate, or
even disappear. To prevent this possibility, they need, somehow, to coop-
erate. Think of a situation where a group of neighbors use a bridge to cross
the river and go hiking to a nearby forest. The base of the bridge is dam-
aged and, unless a major reparation is done, it eventually collapse. Another
example is saving the whales. We shall refer to this set-up as prevention of
public good deterioration (PPGD), in contrast to the most classical case of
public good provision (PGP). The crucial difference between the two cases
of PGP and PPGD is just whether individuals have initially the public
good or not.

The aim of the paper is to answer, both theoretically and experimentally,
to this very simple question:

Do people contribute more in PGP, rather than in PPGD?

To this aim, the remainder of the paper is arranged as follows. In
Section 2, we set up the basic setup in which the public good problem is
presented as a VCTG under two different frames: PGP and PPGD. As
we show in Proposition 1, the game has a unique (symmetric) Bayes Nash
equilibrium, which uniquely define the same cutoff value ¢* in the individual
cost of contributing, below (above) which players do (not) contribute. As
Proposition 1 shows, this cutoff value is constant across players and frames.

We use Proposition 1 as our benchmark for subsequent analysis. In
Section 2.1 we follow Andreoni and Miller [1] by assuming that players’
preferences not only depend upon their individual monetary rewards in the
game but also on two individual parameters which measure players’ satis-
faction when i) they simply contribute (independently on the outcome) and
ii) when the public good is provided (independently on whether they have
contributed or not). This modifications, by allowing for heterogeneity in
subjects’ preferences, break the symmetry of the equilibrium of Proposition
1. However, as before, the equilibrium remains the same under both frames:
PGP and PPGD. Section ?? look at our theoretical framework from the

3 Another interpretation is that a minimum number of agents must contribute to the
provision of the public good, when all individuals contribute equally (Olson [10]).



point of view of Prospect theory. Under this alternative paradigm, play-
ers’ preferences crucially depends on a reference point they use to evaluate
costs and benefits of contribution. As a consequence, different frames yield
different equilibria, which we characterize in a sequence of propositions as
functions of all reference points and contribution thresholds induced by our
framework. In Section 3 we calibrate the model to provide theoretical pre-
dictions for our experiment, whose basic design is describe in Section 4.
Section 5 describes our experimental results, followed by our conclusions
and an Appendix in which we report the experimental instructions..

2 The basic model

There is a group of N individuals. An individual is indexed by 7 € {1,.., N}.
Individual ¢ has wealth w;. Each individual has one unit of input that she
can either consume privately or contribute. The public good is provided if
and only if at least k units of input are contributed, where 1 < k < N. The
input of individual ¢ has a private value of ¢;. Each individual knows her
own value ¢;. Regarding the value of the input of other individuals, each
individual knows only that they come from some Cumulative Distribution
Function F'(-) which is continuous on some interval [0,¢], with ¢ > 0 and
F(0) =0, and F(¢) = 1. By analogy with our experimental conditions, in
what follows we shall assume that this distribution is uniform. We normal-
ize the value that the public good has for every individual as +g (-g).

Figure 1 describes player ¢'s monetary payoffs in case of VCTG when
the number of individuals other than ¢ that are contributing is n and the
contribution threshold is k. In Figure 1, the letter C (NC) denote the action
of (non) contributing.

Statesof the world | n >k—1|n=k—-1| n<k-1
Probabilities » P2 1—p—p

C g g 0

NC g+c G C;

Fig. 1. Voluntary Contribution Threshold Game

State probabilities are determined in equilibrium. A symmetric Bayesian
Nash Equilibrium has the form of a cutpoint rule: Individual ¢ contributes
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if and only if her cost ¢; is less than a cutpoint value ¢*, common to all
individuals. Given a ¢* and the assumed uniform distribution of the ¢;, the
probabilities p; can be computed. To solve for the value of ¢*, we note that
it must be that value that makes an individual to be indifferent between C
and NC. Then, it must satisfy:

prp=pl+c)+pc+({1-p—p). (1)
From this we get:
c=p=Pr(n=k—1).
Then c¢* is defined implicitly by the following

Proposition 1 In the unigue BNE of the game of Figure 1, all player
contribute whenever ¢; < c*, and do not contribute whenever ¢; > c*, where

T e

By analogy with our experimental conditions, consider a situation where
N = 3,k = 2, and ¢; is uniformly distributed on [0,¢], with ¢ = 1.1. In
this case, By (2), we then have ¢ = .495 and the predicted frequency of
contribution is F(c¢*) = .45.

Notice that Figure 1 not only represents the case of PGP. The rep-
resentation of the case of PPGD is exactly identical. In other words, the
(BN) equilibria of the contribution game induced by Figure 1 are absolutely
identical, independently of the frame.

2.1 Altruism

In this section, we follow Andreoni and Miller [1] by considering a situation
in which players

(i) derive some extra utility from contributing (they feel better just
because they contribute) and/or

(ii) derive some extra utility from knowing that the public good is there,
so other people enjoy it.

If these two effects are individual specific constants which sum up to
the monetary payoffs in the game of Figure 1, then Figure 2 represents the
payoff matrix this new strategic situation.



States of the world n>k—1 n=k—1 n<k-—1
Probabilities » P2 1—p—p

C wi+1+pw+ 06 | wi+1+p+ 05 Wi + My

NC w; + 1+ ¢+ B, Wi + ¢ Wi + ¢

Fig. 2. Basic game with altruistic preferences

The parameter p, of Figure 2 represents the utility that player 7 derives
from the fact that she is contributing. Note that this extra utility is inde-
pendent of whether the public good is provided or not. By the same token,
the parameter 3; represents the additional utility that ¢ derives when the
public good is provided, presumably because all other individuals are en-
joying it. Again, this extra utility is independent of whether player ¢ has
contributed or not.

Under these new assumptions, player ¢ will contribute if

This, in turn, defines a cutoft value

c; =p2(1+8) + 1y (3)

Notice that ¢ can now vary across players, since they may hold het-
erogenous values for p, and 3;. However, like in Proposition 1, the same
equilibrium value for ¢ is common to both frames, PGP and PPGD.

2.2 Frames

If players evaluate risky prospects in terms of gains and losses with respect
to a reference point, the game of provision of the public good can be framed
into four natural forms. The successful provision of the public good can
be put as the realization of a gain (PGP), or instead, as the elimination
of a loss (PPGD). Because of loss aversion, the value of the provision of
the public good will be seen as larger if it is put in the latter framing.
Similarly, the cost of contributing can be put as a loss, or instead, as a lack
of realizing a gain. Because of loss aversion, the former will tend to be more
discouraging of contributing. These two dimensions can be combined into
four forms that can be seen as the game seen from four natural reference

6



points: zo =0, o = ¢;, o = g, and xo = g + ¢;, where g is the value of the
public good and ¢; is the individual cost of contributing. As it will be seen
below, the effect of the change in the reference point will not be due only
to loss aversion but also to the nonlinearity of the probability weighting
function as well as to the curvature of the value function in gains and or in
losses. Let G, define the induced prospect game when the reference point
is equal to xo.

Reference point zo = 0 (Gp). From this reference point the provision
of the public good is seen as a gain and contributing to the public good
involves a lack of realizing a gain, that is, not contributing involves a gain.
This is exactly the case of the matrix form of Figure 1.

n>k—1|n=k—1|n<k-1
C g g 0
NC g+c G C;
Fig. 3. Game Gy

In this case, player ¢ has to choose between two prospects involving
gains,

C=(g,pt+qor CN=(g9g+ci,pci,q+7) (4)

Where p=Pr(n >k —-1),g=Pr(n=%k—1), and r = Pr(n < k —1).
Loss aversion will then not be playing any role in this choice.

Reference point zop = ¢; (G.). In G. the provision of the public good is
seen as a gain, as in the previous case. However, now contributing to the
public good involves a loss. The payoff matrix of Figure 1 is modified by
substracting xo = ¢; to every cell.

n>k—1|n=k—-1|n<k-1
C g—¢G g—¢G —G
NC g 0 0
Fig. 4. Game G,




Player ¢ has now to choose between two prospects,
C=(g9g—cip—c,qg+r)or CN = (g,p) (®)

Notice that the payoft g — ¢;, corresponding to contributing when suf-
ficient number of others also contribute, may be a gain or a loss, since it
may be ¢; > g. In this latter case, NC is a strictly dominant strategy.

Reference point zo = g (G,). If zo = g, the provision of the public good
is not seen as a gain, but instead, as avoiding a loss. On the other hand,
the cost of contributing is not seen as a loss, but instead, it is seen as a lack
of realizing a gain. As a consequence, payoffs in this situation are those of
Figure 1 in which the value of the public good xg = g is subtracted to every
cell.

n>k—1|n=k—1|n<k-1
C 0 0 —qg
NC Ci —(g—a) | —(g—«a)
Fig. 5. Game Gy

In this case, player ¢ has to choose between two prospects,
C=(=g,7)or CN = (¢i,p;—(9 —ci).q+7) (6)

C involves a risky loss, and CN that may result in a gain or a loss, in
the non trivial case where g > ¢;.

Reference point zo = g +¢; (Gg4.). In this latter case, the provision of
the public good is again not seen as a gain, but instead, as avoiding a loss.
On the other hand, the cost of contributing is now seen as involving a loss.
As a consequence, payoffs in this situation are those of Figure 1 in which
o = g + ¢; is subtracted to every cell.

n>k—1|n=k—-1|n<k-1

C —Gi —Gi —9— G
NC 0 —g —g
Fig. 6. Game Gy,




Player ¢ has now to choose between two prospects involving only losses,
C=(-c,p+q—g—cur)or CN=(=g—ci,q+r) (M)

Since these prospects involve only losses, loss aversion plays no role in
this choice.

2.3 One contribution is enough (I'y)

In this subsection we consider the polar case where the public good is
produced whenever there is at least a contribution. As we shall see this is
a simple case where it is clear both the relevance of the reference point and
the contrast with the predicted behavior under Expected Utility Theory.

We focus on symmetric pure strategy equilibria. Let s be a cutoff strat-
egy profile where each individual j contributes if her cost ¢; < ¢ and she
does not contribute if her cost ¢; > ¢. Let g(c) be the probability that no
individual other than ¢ contributes, that is,

ge)=(1 - (8)

Note that ¢ is decreasing in ¢, from 1 at c=0 to 0 at c= 1.
We analyze equilibria from the four natural reference points: zo = 1+c,
o =1, xp = ¢, and zo = 0.

(a) Reference Point zp = 1+ c. Equilibrium Conditions,

= w(q) 9)

Since the left-hand side is increasing from 0 to 1, and the right-hand
side is decreasing from 1 to 0, there is a unique symmetric equilibrium
¢l € (0,1).



(b) Reference Point z, = ¢. Equilibrium Conditions,

v(l—c¢)=w(l—q)v(l)

v(l —¢)
v(1)

=w(l—gq) (10)

Since the left-hand side is decreasing from 1 to 0, and the right-hand

side is increasing from 0 to 1, there is a unique symmetric equilibrium
c; € (0,1).

(c) Reference Point zp = 0. Equilibrium Conditions,

v(l) =v(c)+w(l —q)[v(1+ ¢c) —v(c)] (11)

Note that the right-hand side has a positive derivative so that it is increasing
and at 0 is 0, so less than the left-hand side, which is less than the right-
hand side at 1 that is v(2). Then, there is a unique symmetric equilibrium
¢y € (0,1).

(d) Reference Point z; = 1. Equilibrium Conditions,

0=w(l—qu(c)+w(gu(c—1) (12)

Since the right-hand side is increasing from v(—1) < 0 to v(1) > 0, it follows
that there is a unique symmetric equilibrium ¢j € (0, 1).
We have shown the following Proposition.

Proposition 1. Suppose the public good is provided as long as at least
one individual contributes. Under Prospect Theory, for each of the four
reference points ro = 1+c¢, xo = ¢, o = 0, and xo = 1, there exists a unique
symmetric equilibrium. These equilibria are interior to (0,1) and are the
unique solution to the equations (9), (10), (11), and (12), respectively.
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2.3.1 Ranking probability of contribution by reference point

We next rank the probability of contribution resulting from the four natural
reference points. We begin with the comparison of ¢, and c].

Suppose a = ¢j . = ¢ = b, then g(a) < q(b), w(g(a)) < w(q(b)), and by
subcertainty of the probability weighting function, (9) and (10) imply,
v(—a)v(l —b)
v(=1) w(l)

= w(g(a)) +~w(l —q(b)) < w(g®)) +w(l —qb) <1 (13)

On the other hand, from the concavity in gains of the value function v it
follows,

v(1 = b) > bu(0) + (1 — bw(l)

S0

v(l1—1b)
v(1)

with strict inequality if the concavity is strict. Similarly, from the convexity
in losses of v it follows,

v(—a) < (1 —a)v(0)+ av(—1),

and since v(—1) < v(0) =0,

>a (15)

with strict inequality if convexity is strict.
Thus, by (13), (14), and (15),

a+1—0b<1.

a < b.

A contradiction of our assumption that a > b.
We have proved that in equilibrium, there is more contribution when the
reference point is g = ¢ than when it is the high reference point o = 1+c.
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Proposition 2. Suppose the public good is provided as long as at least
one ndividual contributes. Under Prospect Theory, at the symmetric equi-
librium, there is more contribution with a low reference point o = ¢ than
with a high reference point xo = 1+ c.

CZ > CT+C' (16>

For this result it suffices that any of the following holds: subcertainty of
the probability weighting function w, strict concavity in gains of the value
function v, or strict convexity in losses of v.

Note that since from these two reference points, any of the prospects at
choice is nonnegative or nonpositive, loss aversion plays no role.

When the reference point is zop = 0, the unique symmetric equilibrium
is the solution to equation (11), which we can also write,

v(1) —w(e)
v(l1+4c¢) —v(c)

= w(1 —q(c)). (17)

By concavity of v in the positive domain,

v(1) — v(c) S v(l1+4c¢) —v(c)
l—c — l+c—c

S0,

v(1) —v(c)
v(l+¢) — v(c) zl-c (18)

Thus, by the same argument that showed c; > ¢, we have ¢j > c]_..

Proposition 3. Suppose the public good is provided as long as at least
one ndividual contributes. Under Prospect Theory, at the symmetric equi-
librium, there is more contribution with a low reference point xo = 0 than
with a high reference point xo = 1+ c.

CS > CT+C' (19>

For this result it suffices that any of the following holds: subcertainty of
the probability weighting function w, strict concavity in gains of the value
function v, or strict convexity in losses of v.
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Loss aversion again plays no role in this comparison.

If the value of the public good is relatively small, as it is likely to be
in an experimental setting, the value function can be taken as linear in
gains and linear in losses. From the equilibrium conditions (10) and (11)
corresponding to the two low reference points zo = ¢ and zop = 0, it is
immediate that if the value function is linear in gains on the interval [0, 1]
then at both reference points the equilibrium is the same.

Proposition 4. Suppose the public good is provided as long as at least
one dividual contributes. Under Prospect Theory, if the value function v
18 linear in the domain of gains, [0, 1], then

c.=c (20)

Proposition 4 can be generalized. When v is linear in gains the payoffs
and so the equilibria are not affected when the reference point moves down
from c¢. Similarly when v is linear in losses, nothing changes if the reference
point moves up from 1+ c.

Next we compare the equilibrium at an intermediate reference point
zo = 1 and at a high reference point zo = 1+ c. We show that ¢ > ¢,
by showing that the right-hand side of (12), the equilibrium condition for
reference point zo = 1, evaluated at ¢, is negative.

Let a = ¢}, so by (9),

= w(g(a)). (21)

Let R(-) be the right-hand side of (12). From (21) and subcertainty of the
probability weighting function w,

R(a) =w(l —a)v(a)+ w(a)v(a—1) (22)
R(a) < (1 . ZE:‘B ) v(a) + Ziigv(a —1) (23)
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For z > 0 let A(z) := —v(—=z)/v(z), be the variable loss aversion. It is
generally assumed that A > 1. Empirical evidence suggests it is close to a
value of 2. No loss aversion corresponds to A = 1.

From (23),
v(—1)—v(—a)\ v(—a) v(—a)
R < - (M) e iape @
So,
R - (”(_“) — ”(_1)> tula—1) < v(—a)— v(=1) ~ v(a—1).
v(—a) Ala)

(25)

With the last inequality being strict if there is loss aversion, i.e., if A(a) > 1.
Now, since v is convex in losses and 0 < a < 1, by Proposition 1, we have,

v(a—1) < av(0)+ (1 — ay(—-1) = (1 — a)(—1), (26)
and
v(—a) < (1 — a)v(0) + av(—1) = av(~1). (27)
So,
v(a—1)+v(—a) < v(-1), (28)

and R(a) < 0. We conclude that ¢ > ¢j_..

Proposition 5. Suppose the public good is provided as long as at least
one ndividual contributes. Under Prospect Theory, at the symmetric equi-
librium, there is more contribution with an intermediate reference point
xo = 1 than with a high reference point o = 1+ c.

CT > CT+C' (29>

For this result it suffices that any of the following holds: loss aversion,
subcertainty of the probability weighting function w, strict concavity in gains
of the value function v, or strict convexity in losses of v.

. * : * *
Finally we compare ¢} with ¢ and c;.
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Evaluating the right-hand side of (12) at b = c.

R(b) = w(l — g+ wla®)(e— 1) = - wgyt - 1
(30)
and since A(1 —b) = —v(b—1)/v(1 —b),
Ry = "0 30 gy - b (1)
v(1)

Since (31) is linear and decreasing in A(1 — b) and R(b) is increasing in b,
it follows that for A(1 — b) greater than the threshold
— v(c))
Ae = —————— 32
vDule(e) 2
R(b) > 0 so that ¢f > b = ¢}, while the inequality is reversed it A\(1 — b) is
less than ..

Similarly, evaluating the right-hand side of (12) at ¢ = ¢j,.

v(1) —v(c)

Rie) = w(l ~ g(0)(e) T wlgle)e(c— 1) = T

v(c) +w(g(c)v(c—1),
(33)
and since A(1 —c¢) = —v(c—1)/v(1 —¢),

_v(d) —v(e)
~w(l+c)—v(c)

R(c) v(c) = A(1 = cw(g(c))v(l — o). (34)

Since (34) is linear and decreasing in A\(1 — ¢) and R(c) is increasing in c,
it follows that for A(1 — ¢) greater than the threshold

~ v(1) — v(c) v(c) 1
Ao = <v(1+c) —v(c)) <v(1 — c)) <w(q(c))> ' (85)

R(c) > 0 so that ¢f > ¢ = ¢, while the inequality is reversed it A\(1 — ¢) is
less than Ag.
We have proved the following proposition.
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Proposition 6. Suppose the public good is provided as long as at least
one ndividual contributes. Under Prospect Theory, at the symmetric equi-
librium, there is more contribution with a reference point xo = 1 than with
a lower reference point o = ¢ if and only if loss aversion is high enough,

¢ > iff M1 —co) > A (36)

where the threshold . is defined by (32).

Similarly, there is more contribution with a reference point xo = 1 than
with a lower reference point xo = 0 if and only if loss aversion is high
enough,

¢ > iff A1 —¢) > M (37)

where the threshold X is defined by (35).
In the case that the value function v is linear in gains, both thresholds
collapse,

A==\ = (38)

where ¢ = ¢ = ¢, and g = q(c).

If in addition, the probability weighting function is linear, then X\ = 1,
so that if there is loss aversion, i.e., A > 1, then ¢i is greater than the
equiltbrium probability of contribution with the other reference points.

2.3.2 Comparison with expected utility

Let ¢, be the symmetric equilibrium probability of individual contribution
for linear VNM utility in the game where a single contribution is enough
for the public good to be provided. Clearly, c., is the unique solution to
the equilibrium condition ,

Cey = Q(Ceu) == (1 - Ceu)Nil- (39>

Since ¢ is decreasing both in ¢ and N, it is clear from (39) that c., is de-
creasing in N. The larger the group, the smaller the equilibrium probability
of contribution for each individual. Some values of ¢, for small groups:

Ceu(2) = 1/2
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Cou(3) = .382

Cou(4) = .318

Ceu(5) = .276

We start comparing the equilibrium probability of contribution for a
high reference point o = 1 + ¢ with the expected utility probability of
contribution ce,. At ce, the left-hand side and the right-hand side of the
equilibrium condition for ¢, expression (9), becomes,

R(cCew) = w(cCeu)

U(—Ceu)
v(—1)

L(Ceu) == 2 Cey
The last inequality follows from convexity of v on the negative domain, and
the inequality becomes an equality if v is linear in losses.

Let ¢y be the interior fix point of the probability weighting function,
ie., w(cy) = ¢, 0 < ¢y < 1. Then, if cew > ¢f, W(Cew) < Ceu, and since L is
increasing and R is decreasing it must be ¢j, . < ceu.

Proposition 7. Suppose the public good is provided as long as at least
one ndividual contributes. Under Prospect Theory, at the symmetric equi-
librium, the probability of contribution with a high reference point zo = 1+c¢
18 less than according to Expected Utility Theory if the latter is less than
the fix point of the probability weighting function.

Clie < Ceu if Ceu > Cf. (40)
In addition, if the value function v is linear in losses then

Clie = Ceu if Cou < Cf. (41)

Prelec (1998) reports estimates of the fix point ¢y that range from .30
to .39. Then it follows from Proposition 7 that if there are only N = 2
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individuals, ¢j, < ceu, and if there are more than 4 individuals in the
group then cj,, > ¢ if v is linear in losses.

To compare ¢, with c.,, evaluate the left- and right-hand sides of the
equilibrium condition of the former at the latter.

1_ eu
vd—Ca) oy (42)

L(Ceu) == ’U(l) =

by concavity of v in gains, and with equality if v is linear in gains.
R(cew) = w(l — Cen). (43)

If, as all estimates suggest, ¢y < 1/2, ¢ < 1 — ce for all N > 1, so that
1 — ceu > wW(l — ce). Thus, L(cew) > R(cew) and we have the following
proposition.

Proposition 8. Suppose the public good is provided as long as at least
one ndividual contributes. Under Prospect Theory, at the symmetric equi-
librium, the probability of contribution with reference point xo = c is greater
than according to Expected Utility Theory , if the fix point of the weighting
function ¢y < 1/2.

Cr > Ceu, (44)

The result also holds if the probability weighting function w is linear but the
value function v is strictly concave in gains.

Comparing ¢ and c., we similarly get the following proposition.

Proposition 9. Suppose the public good is provided as long as at least
one ndividual contributes. Under Prospect Theory, at the symmetric equi-
librium, the probability of contribution with a low reference point xo = 0 is
greater than according to Expected Utility Theory , if the fix point of the
weighting function ¢y < 1/2.

¢ > Ceus (45)

The result also holds if the probability weighting function w is linear but the
value function v is strictly concave in gains.
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Proof. This is immediate for v linear in gains, by Proposition 4 and 8. It
remains to prove the result for v nonlinear in gains.

Evaluate the right-hand side of the equilibrium condition of ¢, expres-
sion (11), at cey,

R(Ceu) = v(Ceu) + w(l — ceu) [U(1 4 Ceu) — v(Ceu)]- (46)
If ¢y <1/2, then 1 — cew > ¢y, SOW(1 — Ceu) < 1 — Ceu,
R(cew) < v(Cew) + (1 = ceu) [V(1 + Ceu) — v(cen)] s (47)
and, since by concavity of v in gains,
v(l) >v(c)+ (1 —=c)[v(l+c)—v(c)], (48)

it follows that v(1) > R(cey), and since R is increasing, it must be ¢ > cey.
O

Finally, we compare ¢] with cey.

Proposition 10. Suppose the public good is provided as long as at least
one ndividual contributes. Under Prospect Theory, at the symmetric equi-
librium, the probability of contribution with reference point xo = 1 s greater
than according to Expected Utility Theory ,

¢ > Ceu iff A1 — ceu) > Aeu, (49)

— w(l — Ceu) U(Ceu)
Aew = . 50
<U(1 - Ceu)) <w(ceu) (50)
In particular, for N = 2, Aew = 1. For N > 2, Aew < 1, if v is linear in
gains and cey < cy.

where the threshold,

Proof. At c.,, the right-hand side of the equilibrium condition for cj,
expression (12) becomes,

R(Cer) = W(1 — Cer)U(Cer) T W(Cer )V (Cere — 1). (51)
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Then (49) follows since R is increasing. o
For N = 2, since ¢, = 1/2 = 1 — Cey, clearly Ae, = 1.
For N > 2, if v is linear in gains,

[ w(l = ce) v(ce) \ (w1 = ce) .
)\eu - <U(1 N Ceu)) <W(Ceu))> a < 1- Ceu ) <w(Ceu))> ’ (52>

is less than cey/w(cey) since 1 — coy > 1/2 > ¢y, by regressiveness and
subcertainty of w at cy. Thus, if ce. < ¢ then Ay < 1 since cey > w(cew).
O

2.4 All contributions required (I'y)

In this section we consider the other polar case, where the provision of the
public good requires that all of the players contribute.

So far we have considered that the value of the public good is g = 1, the
same as the supremum of the support of the distribution of private costs.
As it will be apparent below, it is convenient that we allow the value of
the public good g < 1. When g < 1 it is clearly dominated the strategy of
contributing regardless of cost. This way we get a sharper contrast between
EUT and PT that can be tested experimentally. We focus our analysis in
the limit of equilibrium as ¢ tends to 1 from below.

As in the previous section, let g(c) be the probability that a player is
decisive (i.e., pivotal) given that all the other players contribute if and only
if their cost is less than c. Then, in this case, g(c) = ¢!, Clearly, q is an
increasing function in ¢ from 0 at c =0 to 1 at ¢ = 1, and decreasing in N.

We start with the equilibrium analysis in the reign of Expected Utility
Theory with linear VNM utility function. In equilibrium,

c (53)

gCNfl —

Proposition 11. Suppose the public good is provided as long as all players
contribute. Under Expected Utility Theory with linear utility function, the
symmetric equilibria are the solutions ¢ € [0, g] of equation (53), that is,

(i) For g < 1 the unique equilibrium is ce, = 0

(it) For N =2, and g =1 there is a continuum of equilibria [0, 1].

(it) For N > 2 and g = 1, there are only two equilibria O and 1.

We now turn to analyzing equilibrium under Prospect Theory for the
four reference points we have considered in the previous section.
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