(a) High reference point z, > g

Equilibrium condition at reference point xg = g,

w(l—gv(—g) = v(c—g). (54)

Clearly, ¢ = 0 is always an equilibrium and ¢ = 1 is also an equilibrium if
and only if g = 1.
Equilibrium condition at reference point xg = g + ¢,

v(=¢) +w(l —¢)[v(~g —¢c) —v(=c)] = v(~g) (55)

Clearly, ¢ = 0 is always an equilibrium and ¢ = 1 is also an equilibrium if
and only if g = 1.

It is also immediate that if v is linear in losses the equilibrium con-
ditions at any reference point zo > g are the same, so the equilibria are
the same too. Proposition 12, next, establishes a number of properties for
the symmetric equilibria at these high reference points. We have already
observed that ¢ = 0 is an equilibrium and ¢ = 1 is also an equilibrium if
and only if ¢ = 1. These equilibria however are not stable in the sense
that the best reaction to a small deviation results in a further deviation.
Besides, the equilibrium ¢ = 1 is not robust in the sense that it is not the
limit of any equilibria as g tends to 1 from below, that is, even though it
is an equilibrium when g = 1, there is no equilibrium close to it when g is
slightly smaller than 1.

When the group has two members, N = 2, there is a unique interior
equilibrium with threshold ¢; = ¢14. = 1—¢y. As N increases the maximum
interior equilibrium—the most efficient—diminishes while there exists an
interior equilibria, in particular,

C1,.N < 1-— Cf, N > 2, (56)

While if for some NV there is no interior equilibrium then there is no interior
equilibrium for any larger N either.

Proposition 12. Suppose the public good is provided as long as all players
contribute. Under Prospect Theory with linear value functions in losses, the
set of symmetric equilibria for reference point xo > g includes ¢ = 0, and
c=1if and only if g =1, in addition,
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(i) The set of equilibria is the same for any reference point xo > g.
(it) For N = 2, at g = 1 and in the limit as g — 1, the only interior
equiltbrium is

¢ =Che=1-cr (57)

(it1) For N > 2, at g =1 and in the limit as g — 1, there is no interior
equilibrium greater than or equal to (1 — cy).

(iv) More generally, for g =1 and in the limit as g — 1, if c1.n is the
mazximum interior equilibrium for N = m > 1, then the maximum interior
equilitbrium for N = m+ 1, if it exists, satisfies,

Clom+1 < Clom. (58)

(v) For N > 2 there can be a continuum of equilibria in [0,1 — cs), no
interior equilibrium, or any number of them in that interval.

(vi) For g =1 and in the limit as g — 1, if for N = m > 2 there is no
interior equilibrium, then there is no interior equilibrium for any N > m.

Proof. With v linear in losses, and g = 1, the equilibrium conditions (54)
and (55) become the same,

w(l—c"H=1-¢ (59)
which shows (i).
Any ¢ € (0,1) satisfies the equilibrium condition (59) if and only if
x=1—ce€ (0,1) satisfies,
wl—Q1-2)"" =g, (60)
that is, if and only if the function f,
fy=1-(1-2)"", (61)

is the inverse of w at z, i.e.,

flz)=w" (z). (62)



Note that since w is increasing on [0, 1] it has a well defined inverse and it
is also increasing and has the same fix point c;.

For N = 2, f is the identity, so that (62) becomes, x = w'(z), that
is, x = w(z), whose interior solution is z = cy. Thus, for N = 2 the only
interior solution is ¢ =1 — ¢y, as (ii) states.

Now, for any z € (0,1), (1—2) < 1, so that for any N > 2, (1—2)V ! <
l—zand f(z)=1—(1—2)"! >z So, that c=1—z € (0,1) can be an
equilibrium only if w!(z) = f(z) < z, that is, if w(z) > z, which occurs if
and only if > ¢y, that is, ¢ < 1 — ¢y, as stated in (iii).

Note that (iii) and (ii) imply (iv) for the case m = 2.

To show (iv) for m > 2, let ¢, € (0,1) be the supremum interior equi-
librium for N =n > 3. Let z,, = 1 — ¢, and Gn(2) = fn(z) — w(2)
be the left-hand side minus the right-hand side of the equilibrium con-
dition (62). Let m be an integer such that n > m > 2. Note that
Gm(l —cf) = fm(l —cf) — ¢ > 0. Note also that because fn, and conse-
quently Gy, are increasing in N for any z € (0,1), Gy (z,,) < Gn(z,) = O.
Then by continuity of Gy, (z) in z € (0,1) it follows that there exists a
Tm € (1 — ¢f, zyn) such that Gy, (zm) = 0. Thus ¢, = 1 — 2, is an interior
equilibrium for N = m, satistying ¢, < ¢,. This proves (iv).

To show (vi) note that if there is no interior equilibrium for N =m > 2,
then Gy, (z) > 0 for all z € (1 — ¢¢,1) for we know that G,,(1 —¢y) > 0.
Now since Gy is increasing in N, the same inequality holds for any larger
N > m, and no interior equilibrium exists either.

To show (v), for any given integer n > 2, take a weighting function such
as for 1 > p > p, is defined by

wap) i= £, (p) = 1= (1 =)/ Vifpe [p.1), (63)

where p > fn(cy). For p < P, wy,(p) can be defined to have a fix point
p = cf_and have all the properties assumed in Prospect Theory. With
such a weighting function, it is clear from the equilibrium condition (62)
that for N = n, the set of equilibria is [Q, 1] U {0}, while for N > n there
is no interior equilibrium. Similarly it can be shown that for any subset
S C (cy,1] with S being a union of close intervals included in (cy, 1], there
is a weighting function satisfying the properties stated in Prospect Theory
and with fix point cs,such that S is the set of equilibria for some N > 2. O

(b) Low reference point z, =0
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Equilibrium condition

w(g)v(g) = v(c). (64)

Clearly, ¢ = 0 is always an equilibrium and ¢ = 1 is also an equilibrium if
and only if g = 1.

Proposition 13. Suppose the public good is provided as long as all players
contribute. Under Prospect Theory with linear value functions in gains, the
set of symmetric equilibria for reference point xo = 0 includes ¢ = 0, and
c=1if and only if g =1, in addition,

(i) For N = 2, in the limit as g — 1 the only interior equilibrium is
¢y = cy.

(it) For N > 1, in the limit as g — 1 there is no additional equilibrium
greater than cy.

(i) For N > 2 there can be a continuum of equilibria on [0,cs], no
interior equilibrium, or any number of them in that interval.

It follows from Propositions 12 and 13 that for N = 2 and g close
to 1, the most efficient equilibrium involves more contribution for a high
reference point xo = 1 than for a low reference point xg = 0.

2.5 Intermediate contribution requirements: 1 < k <

N

Finally we address the problem when the number of contributions required
for the provision of the public good is greater than 1 and less than V.

Three probabilities are important to determine the symmetric equilib-
ria. Suppose every player j # ¢ is following the strategy of contributing
whenever her cost is less than a threshold ¢. As above, let ¢g(c¢) be the prob-
ability that ¢ is decisive for the provision of the public good, i.e., q(c) is
the probability that exactly k£ — 1 players other than ¢ have a cost less than
c. Similarly, let p(c) be the probability that the public good is provided
regardless of what ¢ does, i.e., p(c) is the probability that at least k players
other than ¢ contribute. Finally let r(c) be the probability that the public
good is not provided regardless of #’s choice. We have,

q(c)=Cn 1 11—V F (65)
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=

p(c) = CNfld'Cj(l — C)Nﬁlij (66)

J

1
ey

r(c) =1—p(c) —q(c) (67)
The following facts will be useful.

Lemma 14 (i) p and p+ q are increasing in c.
(it) r and q +r are decreasing in c.
(i11) q is increasing in ¢ for ¢ < %, and decreasing thereafter. q(0) =0

and q(1) = 1.
Under Expected Utility Theory, the symmetric equilibrium condition is,
q(Cen) = Ceu- (68)

From (65) it follows that ¢ = 0 is an equilibrium and ¢ = 1 is not an
equilibrium. Any other equilibrium has to satisfy,

On g1 ?1—cN*-1=0 (69)

For k£ = 2 < N the only equilibrium other than 0 is ¢, = 1 — 1/(N —
DYW=2) " Since the left-hand side of (69), L(c), is an increasing affine
transformation of ¢(c) it follows from Lemma 14 that L(c) is increasing in
cif ¢ < (k—2)/(N —2) and it is decreasing thereafter. It is then clear that
for 2 < k < N there are at most two positive equilibria, one of them greater
than (k — 2)/(N — 2) and the other one smaller than (k —2)/(N — 2).

It can also be shown that for any k£ > 2 if NV is large enough there are
two positive equilibria, and that if N is small enough there is no positive
equilibrium.

In particular, for N = 4 and N = 5 there is no positive equilibrium with
N >k > 2. For N = 6 there are positive equilibria only if K = 2 and k& = 3.

Proposition 15 Suppose the public good is provided as long as all play-
ers contribute. Under Prospect Theory with loss aversion but linear value
functions in gains and losses, and linear weighting function, the maximum
equilibria satisfy

* * * * *
Cc < Cl+c = Cyp = Cey < Cq, (7())

with weak inequality whenever the maximum is zero.
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Proof. (i) It is straightforward that, since with reference point zo = 0—
matrix of gains and losses (?7)—the prospects at choice (4) involve only
gains, and since with reference point g = 1 + ¢—matrix (?? )—the
prospects at choice (7) involve only losses, there is no role for loss aver-
sion so that with linear value function both in gains and in losses and with
linear probability weighting function, the equilibrium conditions for these
extreme reference points coincide with the equilibrium condition under Ex-
pected Utility Theory (68),

q(c) = c, (71)

so that co = ¢11c = Cen.

(i) We show the first inequality of the proposition. For reference point
xo = ¢—matrix of gains and losses given by (?77)—the equilibrium condition
making indifferent the prospects at choice (5), becomes

w(p+q)o(l = c) + w(r)v(—c) = w(p)v(l). (72)

With linear value function both in gains and in losses and linear probability
weighting function, the equilibrium condition (72) becomes,

(p+q)(1—c)— Arc=p, (73)
S0,
qgo)=[1+A—-Dr(olc (74)

Suppose that there exists a solution c¢. € (0,1) to (74). Then, since for
k> 1, r(c.) >0, and by loss aversion A > 1,

glcc) =1+ (A—Dr(c.)]c. > c. (75)

So that at c. the left-hand side of the equilibrium condition (71) is greater
than the right-hand side Lo(c.) > Ro(c.). Since at ¢ = 1, for that equi-
librium condition the inequality is the opposite, Lo(1) = 0 < Rp(1) = 1,
and both sides are continuous, it follows that there exists an equilibrium
Co > Ce.

(iii) We finally show the last inequality of the proposition. For reference
point xg = 1—matrix of gains and losses given by (??7)—the equilibrium
condition making indifferent the prospects at choice (6), becomes

w(r)v(—1) = w(p)v(c) + w(g+ r)v(—1+c). (76)
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With linear value function both in gains and in losses and linear probability
weighting function, the equilibrium condition (76) becomes,

—Ar=pc—Ag+7r)(1—c). (77)

S0,

©)=c {1 - (1 - %) p<c>] . (78)

Suppose that there exists a solution ¢y € (0,1) to (71). Then, since for
k < N, p(co) > 0, and by loss aversion A > 1,

qlco) =co > ¢ [1 — <1 — %) p(co)] . (79)

So that at ¢y the left-hand-side of the equilibrium condition (78 ) is greater
than the right-hand side Li(cp) > Ri(co). Since at ¢ = 1, for that equilib-
rium condition the inequality is the opposite, L;(1) = 0 < R;(1), and both
sides are continuous, it follows that there exists an equilibrium ¢; > ¢o. O

Note that the maximum equilibrium is the most efficient. Note also
that if the weighting function is not linear, for sufficient loss aversion then
the efficient equilibrium is lowest at reference point xop = ¢ and largest at
reference point xg = 1.

It can also be seen that for ¥ = 2 and N > k small, given a degree
of loss aversion A > 1, if the probability weighting function is sufficiently
regressive, then the equilibrium under Expected Utility Theory is larger
than any of the equilibria under Prospect Theory, whatever the reference
point.

3 Calibration

In this section we report calibrations for the equilibria under Prospect The-
ory from the four natural reference points and under Expected Utility The-
ory. We assume that the value function is linear both in gains and in losses
and it has a loss aversion of A = 2. For the weighting function we take the
functional form proposed by Tversky and Kahneman (1992),
7
w(p) = . 80
D a- o
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Using a maximum likelihood estimation procedure Camerer and Ho (1994)
estimate 6 = .56. Table 1 presents equilibrium probability of contribution
for a few small group sizes N and for all possible levels of contribution
requirements k = 1 through kK = N. When there are multiple equilibria the
efficient interior equilibrium is reported. The number of interior equilibria
is reported in parentheses when it is greater than 1. Table 1 assumes that
the common value of the public good is ¢ = 1, the same as the supremum
of the distribution of costs of contribution.

For k = 1, by Proposition 1 we know that for each reference point xo,

there is a unique equilibrium and it is interior to (0,1). In Table 1, for
k=1,

Clic < Cey < Co = Cec < C1, (81)

which is in accordance with Propositions 2 through 10. In accordance to
Propositions 2, 3, and 5, xo = 1 + ¢ is the reference point resulting in the
lowest equilibrium probability of contribution, that is, when both the lack of
provision of the public good and the cost of contributing are seen to involve
losses. In contrast, in accordance with Propositions 4 through 6, the highest
equilibrium contribution results at reference point 1, that is, when on the
one hand the lack of the provision of the public good is seen as a loss, and
on the other hand, not contributing is seen to involve an individual gain. In
accordance to Proposition 7, the equilibrium for the highest reference point
is less than the equilibrium under Expected Utility Theory, since for N <4
the latter is greater than the fix point of the probability weighting function.
The equilibrium under all the other reference points is greater than under
Expected Utility Theory, as predicted by Propositions 8 through 10.

In sharp contrast with the results for £ = 1, and in line with Proposition
15, for k > 1 Table 1 shows that the lowest efficient equilibrium probability
occurs for reference point zo = ¢, that is when obtaining the public good
is taken as a gain and contributing involves an individual loss; meanwhile
the highest efficient equilibrium contribution results for a reference point
o = 1, that is, the reverse perspective. For k = N, Table 1 also exemplifies
other results obtained in Propositions 11-13: for £k = N, ¢; = ¢1.¢; for
N =2, ¢ = ¢y = .312 the fix point of the weighting function, while
1 = 1. = 1 — ¢g. Finally note that as pointed out after Proposition 15,
because the weighting function is quite regressive, for (small) N > k = 2
the equilibrium probability of contribution is greater under Expected Utility
Theory than under any reference point in Prospect Theory.
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Table 1: Framing Effects on the Equilibrium Probability of Contribution.

N k|l z2zg=0 zo=c¢c x290=1 20=1+c|maxA maxA % | EUT
2 1| .573 573 .609 427 182 43 .500
2 2| .312 A7l .688 .688 Bb17 303 0,1]
3 1| .485 485 b5l .356 155 44 382
3 2| 204 .150 370 .290 .220 147 .500
3 3 0 0 A17(2)  .417(2) 417 00 0
4 1| .428 428 449 316 133 42 318
4 2] .190 152 323 242 A7l 113 423
4 3 1.057(2) 0 301 253 301 00 0
4 4 0 0 0 0 0 0
Public good value g = 1. Loss aversion A = 2.

Weighting function parameter 6 = .56.

Number of interior equilibria in parentheses.

The fifth and sixth columns of Table 1 report the maximum framing
effect on equilibrium probability of contributionsin levels and in percentage,
respectively. Table 1 shows that the effects of framing are substantial.
For £k = 1 and N = 1, the framing effect from a reference point of zo =
1 + ¢ to a reference point zp = 1 is an increase of .182 of probability of
contribution, that is, a 43% increase. For N = 3, the increase in probability
of contribution is .155, a 44% increase. For N = 4, the increase is .133, a
42% increase. The effect increases both in levels and in percentages as k
increases, while it decreases slightly in levels as N increases..

In Table 2, it is assumed that g = .95. Qualitatively the Table is similar
to Table 1, with slightly smaller probabilities of contribution.

As a robustness test, we have computed the equilibria for other estimates
of the probability weighting function, obtaining similar results. Table 3 re-
ports the framing effects on equilibrium probability of contribution (max A)
and their percentages (max A%) for three estimates of the parameter ¢ in
the probability weighting function (80): 6 = .56 estimated by Camerer and
Ho (1994), delta = .61 estimated by Tversky and Kahneman (1992), and
0 = .71 estimated by Wu and Gonzalez (1996).
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Table 2: Framing Effects on the Equilibrium Probability of Contribution.

N klzg=0 zg=c¢c z0=1 zo=1+c| maxA maxA % | EUT
2 1| .553 .553 .589 412 477 43 A7
2 2| .28 153 .629 .629 476 312 0
3 1| .470 470 496 .345 151 44 373
3 2| .192 .140 .353 278 212 152 474
3 3 0 0 336(2)  .336(2) .336 00 0
4 1| .416 416 437 .306 131 43 311
4 2| .180 143 .309 233 .166 117 407
4 3 0 0 279 .236 279 00 0
4 4 0 0 0 0 0 0
Public good value g = .95. Loss aversion A = 2.

Weighting function parameter 6 = .56.

Number of interior equilibria in parentheses.

4 Experimental design

In what follows, we describe the features of the experiment in detail.

4.1 Subjects

The experiment was conducted in 4 subsequent sessions in December, 2005.
A total of 96 students (24 per session) were recruited among the undergrad-
uate student population of the Universidad de Alicante -mainly, undergrad-
uate students from the Economics Department with no (or very little) prior
exposure to game theory. The sessions lasted approximately 60’ each.

4.2 Treatments

The 4 experimental sessions were run in a computer lab.* Instructions were
provided by a self-paced, interactive computer program that introduced
and described the experiment. Subjects were also provided with a written

4The experiment was programmed and conducted with the software z-Tree (Fischbacher

[4]).

30



Table 3: Robustness of Framing Effects.

N k| 6= .56 | 6= .61 o
§=.71
maxA maxA% | maxA maxA% | maxA max A% |
2 1] .182 43 | .158 3% | 124 26|
2 2| 517 303 | .517 358 | .529 633 |
| | |
3 1| .15 4 | 134 36 | .106 28 |
32| .220 147 | 226 141 | 254 145 |
33| 417 co | 0 |0 |
| | |
4 1| .133 42 | 115 36 | .092 28 |
4 2| am 113 | 175 104 | .189 92 |
4 3| .301 co | .270 co | 0 |
4 4 0 |0 0 | |

Public good value g = 1. Loss aversion A = 2.
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copy of the experimental instructions, identical to what they were reading
on the screen.

In each session, subjects played two a total of 48 rounds of two treat-
ments each. As explained in Section x, a treatment is uniquely defined by
a reference point. Within the 4 possible alternatives, we decided to focus
on two cases only, T, and Ty, where T is the contribution game in which
the reference point is equal to z. Let design D; (D2) be the design in which
treatment T, (Ty) is played first (see Figure 7).

Dy Dy
Rounds Sl SQ 53 54
1-24 T. | T, | Ty | T
25-48 T, | T, | T | TG

Fig. 7. Experimental Sessions

In each session, the 24 subjects were divided into 2 cohorts of 12, with
subjects from different cohorts never interacting with each other through-
out the session. We shall therefore read our experimental data under
the assumption that the history of each individual cohort (4 for each de-
sign, Dy and Ds) corresponds to an independent observation of our ex-
perimental environment. Within each round ¢t = 1,...,48, in each co-
hort, 4 groups of 3 subjects were randomly determined. The value of
the prize g was fixed to 50 ptas. at all times. Consistently with our
theoretical framework, the cost for contributing was, for all subjects and
rounds, an independent draw ¢; ~ U[0,¢|, with ¢ = 55 ptas. (7).Let period
7. = {30 —1) <t <30} =1,..,8, be the subsequence of the i—th
3 rounds of each treatment. Within each period t;, subjects experienced
each and every possible k& € {1, 2,3}, with the order being randomly deter-
mined within each 7;. We did so to keep under control the time distance
between two rounds characterized by the same value of k. After being told
the current level of k and ¢;, for that each subject had to

1. Choose whether to contribute or not forfor that round;

2. Elicit their belief on the number of contributors in their group
(excluding herself). Every correct guess would be paid 10 ptas.
at the end of that round.’

®We borrow this design feature from Nyarko and Schotter (2003).
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After each round each agent was informed of the contribution decision
of the other group members (i.e. the outcome for that round), together
with her payoft (on both dimensions: belief and contribution game) and the
average payoft of her group members (only as for the contribution decision
was concerned). The same information was also given in the form of a
History table, so that subjects could easily review the results of all the
rounds that had been played so far.

At the beginning of each treatment, subjects received 1.000 ptas. (1 euro
is approx. 166 ptas.) as initial endowment. A particular care was devoted
in explaining the two different treatments (i.e. the two frames). As for T¢,
subjects would gain g = 50 ptas. if the number of contributors in their
group would reach the target k (with ¢; being subtracted from their initial
endowment; in T, subjects would loose g from their initial endowment if
the numbers of contributors would not reach target, gaining ¢; in case of
non contribution. Subjects received, on average, 15 euros for a 45’ session.®
Instructions were read aloud and we let subjects ask about any doubt they
may had. At the end of the sessions, subjects were asked to answer a
detailed questionnaire on their socio-demographic characteristics, together
with standard questions to estimate their pro-social behavior.”

5 Results

In what follows, we shall report our experimental results in detail. In Sec-
tion 5.1 we present some descriptive statistics; while in Section 5.2 we esti-
mate some (panel) logit regressions which take more carefully into account
the impact of all our experimental conditions on outcome and behavior
distributions. In reading the experimental evidence, our first concern will
be to test the theoretical conjectures of Section 2, which have been cali-
brated, by analogy with our experimental conditions, in Table 3. Let p”
denoting the equilibrium probability under Prospect Theory when N = 3,
the reference point is £ and the contribution threshold is equal to k (with
pF denoting the corresponding BNE probability). Our theoretical model
provides us with the following testable hypotheses:

5The complete set of instructions, translated into English, can be found in the Appen-
dix.
TA copy of the Questionnaire can be found in the Appendix.
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1. Ho:p, = p. (Hy : p, > pr). When k = 1, the estimated values for p]
and p! are .496 and .47 respectively. In this case, it is difficult to pro-
vide a robust alternative hypothesis, since these values are relatively
close to each other. Notice that, in this case, p., = .373.

2. Ho:p}=p2 (Hy:p: > p;). When k = 2, the estimated values for p
and p? are .496 and .47 respectively (with p?, = .474). In this case, it
is difficult to provide a robust alternative hypothesis, since all these
values are relatively close to each other.

3. Hy: p] = p; (H:p, > p. = pi, =0). When k = 3, the estimated
values for p} and p} (p,) are .332 and O respectively. That is, in
this case, Prospect Theory and BNE yield the same prediction when
o = C.

5.1 Descriptive statistics

Figure 8 reports the relative frequency of contributors across treatments.

Fig. 8. Frequency of contributors across treatments

As Figure 8 shows, contributing patterns differ between the two designs.
Precisely, average frequency of contribution is higher (lower) in T, than in
T, when k is low (high), while for the intermediate level of & = 2 both
designs yields basically the same frequency of contribution (.43 and .44
respectively). In Figure 9 we refine this evidence, by disaggregating contri-
bution frequencies for treatment, contribution thresholds k and cost levels,
Ci.

Fig. 9. Frequency of contributors and individual cost levels

Each diagram in Figure 9 reports in two overlapping histograms report-
ing, for each cost interval, absolute frequency of observations and absolute
frequency of contributors.® Not surprisingly, average frequency of contribu-
tors is decreasing in the cost level, although this effect is more pronounced
in T,.

8Since, by analogy with the theoretical model of Section 2, ¢; ~ UJ[0,1.1], we have
a differenct number of observation for each cost interval. This is the reason why the
histogram of observations for class interval is not uniform.
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How do these contribution patterns affect the probability of achieving
(or loosing) the public good g7 In Figure 10 we plot the average frequency
with which the public good is achieved (not lost) across time in the six
experimental conditions.

Fig. 10. Public good provision/non deterioration over time

As Figure 10 shows, this relative frequency basically stay constant over
time (with the sole exception of T, when k& = 2). We do not generally
observe "endgame effects”, that is, a sharp decline in contributions close to
Tg, with exception of T, when k = 3. Again, the probability of successful
provision /not deterioration is decreasing in k, and is basically zero in D,
when k = 3.

We now turn our attention to the extent to which contributing is in-
dividually rational, that is, it corresponds to a best-reply to the current
strategic situation. We can look at this question from two complementary
viewpoints: an ex-ante or an ex-post perspective, that is, consistency of
contribution decision with the elicitated belief of Stage 2 (and consistency
of beliefs with actual behavior), or consistency of contribution decision with
the with the actual opponents’ behavior,respectively.

As for the former, Figure 11 looks at a) the extent to which elicitated
beliefs in Stage 2 depend on k and b) the extent to which they match actual
behavior in Stage 1.

Fig. 11. Elicitated beliefs in Stage 2

Each row of Figure 11a) (b) corresponds to a particular level of k (s_;),
each column to any particular (point) belief. of Figure 11 corresponds to a
particular k (observed strategy profile s_;). First notice that 1 is the modal
belief when k£ =1 and k = 2, where when k& = 3 beliefs are more dispersed
and peak at 2. This is in clear contrast with our theoretical prediction with

9Basically, Figure 10 also describes the evolution of efficient outcomes over time.
In our context, ex-ante (ex-post) efficiency is measured by the efficiency of each in-
dividual action (outcome). Precisely, contributing is always ex-ante efficient because
¢ < SQfExp[Z#i ¢;] = 150 — 55 = 95. As for ex-post efficiency, the event that, for
some particular group and period, > ;¢ > 150 only occurs 5 times out of the total of the
1536 observations.
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VNM preferences, as the unique BNE should imply beliefs concentrated at
0. This has clear consequences when we look at consistency between elici-
tated beliefs and actual behavior in Figure 115), where the cell of the main
diagonal corresponds to those situations in which beliefs turn out to be cor-
rect. In this respect, we notice that for any given opponents’ contribution
level s_; modal (point) belief is always 1. This, in turn, implies that sub-
ject tend to (under) overestimate opponents’ behavior when contribution
is high (low).

Do elicitated belief change over time? In Figure 12 we look at the evo-
lution of subjects belief along the experimental timeline.

Fig. 12. Belief dynamics

As Figure 12 shows, the two experimental treatments exhibit two rather
different dynamic patterns: while in T, average beliefs increase with & and
stays basically constant over time, in 7T, beliefs are less dispersed over k,
with a much more complex dynamic evolution. In particular, average beliefs
drop dramatically both in the case of k =3 and k£ = 1.

By analogy with Figure 12, in Figure 13 we look at the evolution of
best-reply over time, both taking into account the ex-ante and the ex-post
interpretation.

Fig. 13. Best-reply dynamics

Each histogram of Figure 13 counts the number of times in which, in
each experimental period, each subject played a best response either to a)
her elicitated beliefs or to b) the current opponents’ strategy profile. As
Figure 13 shows, subjects’ average frequency of best-responses is higher
when actual behavior is observed. In other words, subjects seem to realize
that the mode of the probability distribution that define their belief is not
a sufficient statistics to determine optimal behavior. Also notice that, with
the sole exception of T, when k = 2, learning effects seem negligible, as
average frequency of best-replies stays basically constant over time.

5.2 Panel regressions

To fully exploit the panel structure of our dataset, in this Section we shall
run some regressions in which individual heterogeneity is controlled for.
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As for our hypothesis testing, we begin by looking at the following simple
regression:

CH =85+ 81T, =1)+¢ +eif, (82)

where CH' is 1 (0) is subject ¢ has (not) contributed in treatment con-
dition (k,T,) and Period 7, ¢; «~» N(0,0?) describes the unobserved time-
invariant heterogeneity which characterizes subject ¢ and %7 is an idiosyn-
cratic error term (we further assume ¢, L ). In other words, 8& (85 + 8%)
gives panel estimates of pF (p’;), to be used in testing the theoretical conjec-

tures of Section 3. Let Bf denote the corresponding estimate by regression
~1 Al

(82). As for k = 1, we have 8, = .34 and 3, = —.07 (S.E. .021 and .022

respectively). This confirms the results of Table 8: when k£ = 1 subjects

contribute significantly more in 7, than in 7¢. Also notice that we cannot
A2
reject the hypothesis pl = p?, = .373. As for k = 2, we have 3, = .42
~2
and 3; = —.01 (S.E. .022 and .025 respectively). This, again confirms the
results of Table 8: when k = 2, treatment effects are not significant. By the
same token, also in this case we can accept the null hypothesis p? = p?,.
~3 A3

Finally, when k = 3, we have 3, = .31 and 3; = .21 (S.E. .024 and .023
respectively). Consistently with our theoretical conjecture, when k = 3,
we have more contribution in 7j than in 7,. On the other hand, in both
cases, actual contribution is much higher than our ”calibrated” forecasts,
as derived by Table 3.

We now look further into the relation between contribution and cost
levels by estimating, for each of the six treatment conditions the following
static panel logit regression:

Pr(Ci: = 1) = IST + ﬁ]chi + ﬁchf + ﬁlchf’ +€ + 5f’tT. (83)

In other words, for each treatment conditions, we estimate the probability
of contributing as a polynomial function of the individual cost level, c;.

Fig. 14. Estimated switching functions

Figure 14 plots the estimated logit functions, together with the theoret-
ical BNE threshold functions, (2). Since regressions (83) also includes the
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constant, 3,, we basically estimate a logit function in which the constant
proxies the average ”utility” associated to the action of contributing, inde-
pendently on the outcome, that is, the average level of p, in equation (3).
By the same token, estimated thresholds c; (k) correspond to the estimated
logit functions when ¢; = .5, highlighted by the dotted line in all diagrams
of Figure 14, have to be interpreted as the estimated cost thresholds (3)
in the theoretical framework of Section 2.1.!° The estimated thresholds of
Figure 14 follow the same ranking of the descriptive statistics of Figure 8:
the switching cost is higher (lower) in D; than in Dy when k is low (high),
where, for the intermediate level of £k = 2, the two switching costs are
basically identical.

Fig. 15. Panel logit estimations

Equation (83) only considers the relation between contribution deci-
sions and cost level. In Figure 15 we estimate a richer model which in-
cludes, together with all explanatory variables in (83) all our experimental
conditions, as follows:

e belief is subject’s elicitated belief in Stage 2;

e forecast 1 is the difference between elicitated belief and actual be-
havior one period behind;

e outcome 1 is equal to 1 (0) if, one period behind the public good
was (not) produced/not deteriorated;

e seq is equal to 1 (2) if the observation is taken from a treatment
played first (second) in the sequence;

e 7 is the time pointer (see Section 4);

e TR is equal to 0 (1) in T¢. (7).

First notice that, as already know from previous analysis, our treatment
dummy act in different directions depending on the level of k, shifting
average effort up in (down) in 7, when k is high (low). As for the effect of

Tn this respect, the estimated constants in all six regressions of Figure 10 are always
positive and significant at any conceivable confidence level.
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beliefs on contributions, again, we see a different pattern depending on the
level of k : contribution moves with beliefs only when k is high. In this sense,
together with the fact that subjects tend to overestimate the contribution of
others -see Figure 11) implies a gradual reduction in free-riding behavior as
k increases. Finally order effects seem to matter, as average effort is lower in
treatments played last in the sequence. By contrast, learning effect within
a treatment seem negligible, as 7 is never significant.

To summarize: even after controlling for all our experimental conditions,
the basic message we get from Section 5.1 remains. Prevention is better
than cure when k is high (i.e. when is relatively difficult for the public good
to be achieved /not deteriorated). When public good provision is relatively
easier the opposite holds.

6 Conclusion

Inspired by the seminal works of Kahnemann and Tversky (dated more
than 30 years from now), economists have learned that frames matter since
they affect the way in which people understand problems and plan to solve
them. In our paper, we study frame effects in the classic problem of pub-
lic good provision, a problem which have important policy implications.
To this aim, we applied Prospect Theory to get different equilibrium dis-
tributions in the four possible different problems. Our basic theoretical
conjecture would call fora) different contribution probabilities in the two
frames tested in the lab with b) more contribution in 7, (basically, because
of loss aversion). In this respect, our experimental evidence backs definitely
up the first working hypothesis; as for the second, this is only true when
k, the threshold below which public good is not provided /not maintained,
is high. When k is low, good old VNM theory seem to predict reasonably
well. Another interesting feature of our experimental data is that subjects
generally contribute more than expected. This evidence is consistent with
Andreoni’s model of altruism. An interesting spin-off for this paper would
be to generalize Prospect Theory to some classic interdependent utility
specification.
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