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Abstract We present a duopoly model with vertical product differentiation
and uncovered market, where the distribution of the consumers’ willingness to
pay.is non-uniform. By using a trapezoid distribution we solve explicitly for
market equilibrium as a function of a mean preserving spread of the income
distribution. We find that the relationship between the latter and all relevant
market variables is typically non monotone, i.e. strongly dependent on initial
conditions. Indeed, these influence the interplay of the two forces affecting
each firm’s demand and its elasticity: greater income concentration makes
for new consumers entering the market and redistributes demand between
firms.
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1 Introduzione
In the analysis of duopolistic markets with vertical product differentiation,
a key question is how market equilibrium is affected by different degrees
of income heterogeneity among consumers. Answers to this question have
been provided in a twofold perspective. On the one hand, the assumption
of covered market has been invoked to extend the generalization of the stan-
dard horizontal differentiation model to the vertical differentiation case (e.g.,
Anderson et al., 1997). On the other hand, the assumption of uniform dis-
tribution of the consumers’ willingness to pay has been used to study how
the solution of the model depends on the degree of relative heterogeneity,
measured by the ratio between the endpoint of the support of the income
distribution — which showed that the market may or not be covered at equi-
librum, depending on the length of the support as well as its position on the
real line (Wauthy, 1996): in this framework, the only distributional shocks
whose effects have been explicitly modeled are a "stretching" of the support of
a uniform distribution, or its horizontal shift along the real line (Gabszewicz
and Thisse, 1979).
This paper studies the equilibrium configuration of the standard duopoly

version of the Mussa - Rosen (1978) model with uncovered market and cost-
less quality choice, under the assumption that the consumers’ income distri-
bution is altered by variations in the degree of dispersion for a given support
— we use a mean preserving spread to model income concentration, higher
levels of which modify a symmetric trapezoid distribution of the willingness
to pay, starting from the standard case of the uniform distribution to the
limit case of the triangular one.
Our main result is that, unlike what happens in horizontal differentiation

models, the effects of a higher concentration of consumers on the firms’ op-
timal choices depend (both quantitatively and qualitatively) on the degree
of concentration one starts with. In other word, a given increase in the fre-
quencies of the central percentiles has very different implications, according
as it affects a very dispersed, or a relatively concentrated, initial distribution.
Very generally speaking, two basic mechanisms are at work as income gets
more concentrated around its mean: first, new classes of consumers enter the
market, who used not to buy at all before the distributional shock; second,
the willingness to pay is increased, of those consumers who did buy before
the distributional shock. If the latter hits a highly dispersed distribution,
the first effect dominates, while the second effect is stronger when dispersion
is low at the inital conditions. Obviously, the relative weight of these two
effects is the key factor affecting the firms’ optimal reactions to the given
shock, both in terms of prices and of optimum quality. Given that the high
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quality level is standardly fixed at its highest value as quality increases are
costless, neither the firms’ market shares, nor their prices, nor the (low) qual-
ity level show a monotonic behavior as the degree of income concentration
varies.
The paper is organized as follows. In section 2 we outline the general

framework of our analysis by modelling market demand under a trapezoid
distribution of the consumers’ incomes. Section 3 offers the complete ana-
lytical solution for market equilibrium as a function of the degree of income
concentration. A discussion of the economic mechanisms underlying this so-
lution is provided in section 4. Some remarks about the robustness of our
results and final comments are gathered in section 5.

2 The general framework
We consider the standard model of a market for a vertically differentiated
product, where two competing firms, i = H,L, play a non-cooperative two-
stage game on price and quality. Each firm i produces a good of quality
si ∈ [0, s] at a cost independent of si, which we normalize to zero. The firm
choosing the highest quality sH sells its product at a price pH , while goods
of the lowest quality sL are sold at a price pL.
Consumers differ according to their taste for quality, θ. Each consumer j

is characterized by the following utility function (Mussa and Rosen, 1978):

Uj = θjs− p ≥ 0 if she purchases a unit of good of quality s

Uj = 0 if no purchase is made

where higher values of θj signal a higher willingness to pay for quality. We
make the standard assumptions to the effect that θH = (pH − pL) /(sH − sL)
identifies the marginal consumer who is indifferent between buying the high
and the low quality goods, while θL = pL/sL identifies the marginal consumer
indifferent between purchasing the low quality good and nothing at all.1

As is well known (e.g., Tirole, 1988, p.97), the preference parameter θ can
also be interpreted as an income index, so that the distribution of θ across
the population of consumers may be taken as a proxy for the distribution
of their incomes. Actually, it is also well known that this interpretation of
the consumers’ heterogeneity raises some doubts about the generality of the

1Indeed, if pL/sL < pH/sH (as is standardly verified in equilibrium), the above prefer-
ences imply that all consumers characterized by θj ≥ pL/sL = θL buy a unit of the good.
The high quality version is purchased by consumers with θj ≥ (pH − pL) / (sH − sL) = θH ,
while the low quality is bought by those with θL ≤ θj < θH .
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standard results (e.g., Wang, 2003), which are obtained under the hypoth-
esis of uniform distribution of θ — and indeed the latter is the assumption
we want to do away with. In order to investigate how the degree of income
concentration affects market equilibrium, we normalize the population to 1
and assume that the indicator θ is distributed across this population accord-
ing to a continuous symmetric trapezoid density f (θ, u),2 defined over the
support [0, 1]; the parameter u ∈ [0, 1] is the length of the shortest base, and
is accordingly an inverse index of concentration.3 In particular, the density
f (θ, u) is defined as follows:

for u = 1 f (θ, 1) = 1 for θ ∈ [0, 1]

for u ∈ [0, 1) f(θ, u) =



4

1− u2
θ for θ ∈ A =

·
0,
1− u

2

¸
2

1 + u
for θ ∈ B =

·
1− u

2
,
1 + u

2

¸
4

1− u2
(1− θ) for θ ∈ C =

·
1 + u

2
, 1

¶

Figure 1 (drawn by way of example under the values u = 1/2 and u = 1/4)
gives an immediate interpretation of the intervals A, B and C. Interval B is
the projection of the shortest base onto the support, and we shall call it the
’modal area’; A and C are the projections onto the support, respectively of
the left and right oblique sides of the trapezoid — with some abus de language,
we shall call them the ‘left tail area’ and the ‘right tail area’.

2The same density has been used by Scrimitore (2005) in the framework of horzontal
product differentiation.

3It can be checked that u is a mean preserving spread, which ranks equal-mean dis-
tributions by second-order stochastic dominance. It is well known that such ranking is
equivalent to Lorenz dominance: u is thus an inequality index satisfying the Pigou-Dalton’s
“principle of transfers”.

4



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1

Figure 1: The densities f(θ, 1/2) (solid) and f(θ, 1/4) (dotted)

Given the above formulation, as u takes on lower and lower values, the
‘income’ distribution gets more concentrated around its mean value µ = 1/2,
from the highly dispersed rectangular distribution (u = 1) up to the most
concentrated triangular distribution (u = 0). In order to trace the pattern of
all relevant variables as a function of this measure of income concentration,
we look for an explicit solution of the model parametrized on u.
First, we determine the demand faced by firms L and H, as a function of

pH , pL, sH and sL:

DH(θH ;u) =

Z 1

θH

f (θ, u) dθ = 1− F (θH , u) (1)

DL(θH , θL;u) =

Z θH

θL

f (θ, u) dθ = F (θH , u)− F (θL, u) (2)

where F (θ, u) =
R θ

0
f(z, u)dz is the distribution associated to the consumers’

density f(·, u).
Clearly, the explicit formulations of (1) and (2) differ, according as the

indifferent consumers θH and θL (i.e., the limits of integration in the above
functions) are located in intervals A, B or C. In principle, six configurations
are conceivable: (a) θL, θH ∈ B; (b) θL, θH ∈ A; (c) θL ∈ A, θH ∈ B; (d)
θL ∈ B, θH ∈ C; (e) θL ∈ A, θH ∈ C; (f ) θL, θH ∈ C. However, the following
proposition allows us to exclude the last three cases.

Proposition 1 Consider a concave symmetric density f(θ) defined over [0, 1],
such that f(0) = f(1) = 0 and f(1/2) ≥ 1. If (θ∗H , θ∗L), θ∗H > θ∗L, identify the
marginal consumers at a perfect Nash Equilibrium in the two stage vertical
differentiation game, then θ∗H is lower than the median of the distribution.
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Proof See the Appendix

By Proposition 1, we can limit our analysis to cases (a) to (c) above,
since in equilibrium no marginal consumer will ever be placed in the right
tail area C. We shall now proceed as follows. First, we look for the solu-
tions of the two-stage game in price and quality constrained by each of these
three possible conjectures about the position of the indifferent consumers —
which amounts in each case to constraining the strategies available to the
firms, limiting their choices to those delivering the conjectured positions of
the marginal consumers. Then we verify which of these three solutions actu-
ally holds in equilibrium, at the various possible values of the concentration
parameter u.

3 The solution of the model
The optimal qualities and prices chosen by the two firms can be determined
following the well known backward induction procedure, i.e. by solving first
the price stage of the game.

3.1 Case (a): both marginal consumers in the modal
area

If we limit ourselves to situations where θL, θH ∈ B, the demand functions
faced by firm H and L are respectively

DH =
1

2
+
1− 2θH
1 + u

DL =
2

1 + u
(θH − θL)

By substituting the definitions of θH and θL into the demand functions, we
can write the profit functions

ΠH (pH , pL, sH , sL) = pH

µ
1

2
+

1

1 + u
− 2

1 + u

pH − pL
sH − sL

¶
(3)

ΠL (pH , pL, sH , sL) = pL
2

1 + u

µ
pH − pL
sH − sL

− pL
sL

¶
(4)
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maximization of which with respect to pH and pL respectively, yields the
following reaction functions of the price game:

pH (pL; sH , sL) =
3 + u

8
(sH − sL) +

1

2
pL

pL (pH ; sH , sL) =
1

2

sL
sH

pH

Therefore, the Nash equilibrium in prices is

pH (sH , sL) =
1

2
sH

(3 + u)

4sH − sL
(sH − sL) (5)

pL (sH , sL) =
1

4
sL
(3 + u)

4sH − sL
(sH − sL) (6)

By substituting (5) and (6) into (3) and (4) we obtain the profit functions
of the quality stage of the game:

ΠH (sH , sL) =
1

2
s2H
(3 + u)2 (sH − sL)

(4sH − sL)
2 (1 + u)

ΠL (sH , sL) =
1

8
sHsL

(3 + u)2 (sH − sL)

(4sH − sL)
2 (1 + u)

Since ΠH is always increasing in sH (as should be expected as quality in-
creases are costless), we may conclude that firm H has a dominant strategy
in choosing the highest available quality:

sH1 = s

Moreover, maximization of ΠL with respect to sL yields the following optimal
quality for firm L:4

sL1 (u) =
4

7
sH1 =

4

7
s

so that the solution for prices can be rewritten as:

pH1 (u) =
(3 + u)

16
s

pL1 (u) =
(3 + u)

56
s

4Notice that if we assume that the income of the indiffferent consumers, θH and θL
lie in the modal area, we obtain for all values of u delivering such a solution the same
(invariant) quality ratio which characterizes the uniform distribution case (Choi and Shin,
1992).
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Finally, we notice that these values of prices and qualities imply the fol-
lowing values for θH and θL:

θH1 (u) =
5

16
+
5u

48
(7)

θL1 (u) =
3

32
+

u

32
(8)

3.2 Case (b): both marginal consumers in the left-tail
area

Assume now that θL, θH ∈ A. Then the demand functions faced by the two
firms are the following

DH = 1− 2θ2H
1− u2

DL =
2
¡
θ2H − θ2L

¢
1− u2

In order to obtain an explicit solution for this case, it is useful to write
profits as functions of θH and θL:

ΠH (pH , pL, sH , sL) = pHDH = (θH∆s + sLθL)

µ
1− 2θ2H

1− u2

¶
(9)

ΠL (pH , pL, sH , sL) = pLDL = 2sLθL

¡
θ2H − θ2L

¢
1− u2

(10)

where ∆s = sH − sL and we make use of the definitions of θH and θL. Since
∂ΠH/∂pH = (∂ΠH/∂θH) (∂θH/∂pH), and (∂θH/∂pH) 6= 0, the first order
condition for profit maximization of firm H at the price stage can be written
as5

∆s − 6∆sθ
2
H − 4θHθLsL
1− u2

= 0

Similarly, for firmL, ∂ΠL/∂pL = (∂ΠL/∂θL) (∂θL/∂pL)+(∂ΠL/∂θH) (∂θH/∂pL),
so that profit maximization requires6

θ2H − 3θ2L − 2θLθH
sL
∆s

= 0

5The second order conditions for a maximum are verified since ΠH is always concave
in θH .

6The second order conditions require d2ΠL

dθ2
L

= 4sL
(s2L−3∆2s)θL−2sLθH∆s

(1−u2)∆2
s

< 0. When

evaluated at the optimal value θL = θH
3∆s

³p
s2L + 3∆

2
s − sL

´
, the numerator of the above

expression becomes= − θH

3∆s

³³p
s2L + 3∆

2
s − sL

´
sL + 3∆

2
s

´p
s2L + 3∆

2
s which is negative

for any sH > sL > 0.
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The above reaction functions yield the following equilibrium values of pH and
pL:

pH (sH , sL) = θH∆s + sLθL =
(3∆2

s + k)√
6

s
1− u2

9∆2
s + 2k

(11)

pL (sH , sL) = sLθL =
k√
6

s
1− u2

9∆2
s + 2k

(12)

where k = sL

³p
s2L + 3∆

2
s − sL

´
By substituting (11) and (12) into the profit functions (9) and (10), we

get

ΠH (sH , sL) =

√
6

3

√
1− u2

(3∆2
s + k)

2³p
9∆2

s + 2k
´3

ΠL (sH , sL) =

√
6

9

√
1− u2

k (3∆2
s + k)³p

9∆2
s + 2k

´3
It can be checked that (not surprisingly) also in this case firm H’s profits are
always increasing in sH , so that H chooses the maximum available quality s,

sH2 = s

while firm L maximizes its profits by setting:7

sL2 (u) = 0.49545s

Therefore, evaluated at the optimal quality the prices of the two firms are

pH2 (u) = 0.24806s
√
1− u2

pL2 (u) = 0.061592s
√
1− u2

As a result, the income indices of the indifferent consumers associated to
this solution are:

θH2 (u) = 0.36957
p
(1− u2) (13)

θL2 (u) = 0.12432
p
(1− u2) (14)

7Maximization of ΠL (sL, sH) yields a solution of the general form sL = asH , where the
constant a is one of the roots of a polynomial of degree 5. Therefore the problem collapses
to the maximization of ΠL (asH , sH) with respect to a. By performing this calculation
we obtain the solution in text. This calculation procedure is analogous to that in Motta
(1993). Notice also that the solution verifies a < 1 and that the second order conditions
for a maximum are satisfied for all economically relevant values of a.
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3.3 Case (c): θL in the left-tail area, θH in the modal
area

If we now constrain our solution to be such that θL ∈ A, θH ∈ B, then the
shape of the demand functions is the following

DH =
1

2
+
1− 2θH
1 + u

DL =
1

2
− 1− 2θH

1 + u
− 2θ2L
1− u2

At the price stage of the game, the profit and reaction functions of firm
H are the same as those of case (a):

ΠH (pH , pL, sH , sL) = pH

µ
1

2
+

1

1 + u
− 2

1 + u

pH − pL
∆s

¶
(15)

pH (pL; sH , sL) =
3 + u

8
∆s +

1

2
pL (16)

As to firm L, by maximizing ΠL (pH , pL, sH , sL) = pLDL with respect to pL,
we obtain the following reaction function8

pL (pH ; sH , sL) =
sL

q
(1− u)2 (2s2L − 3∆2

s) + 12 (1− u)∆spH − 2s2L (1− u)

6∆s

(17)
The simultaneous solution of (16) and (17) yields the Nash equilibrium

prices:

pH (sH , sL) =
3 + u

8
∆s+

+
sL
24∆s

[
p
3 (1− u)

q
3s2L (1− u) + 2∆2

s (1 + 3u)− 3sL (1− u)] (18)

pL (sH , sL) =
sL
12∆s

[
p
3 (1− u)

q
3s2L (1− u) + 2∆2

s (1 + 3u)− 3sL (1− u)]

(19)

In order to solve the quality stage of the game, we rewrite profits of firm
H by substituting (16) into (15):

ΠH (pH (pL, sH , sL) , pL, sH , sL) =
1

32

(∆s (3 + u) + 4pL)
2

(1 + u)∆s

(20)

8It can be checked that the profit function ΠL is concave in pL for ∆s > 0.
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Taking into account that at the price stage equilibrium pL depends on
qualities (eqt.19), dΠH/dsH = dΠH/d∆s = ∂ΠH/∂∆s+(∂ΠH/∂pL) (∂pL/∂∆s).
According to (20), ∂ΠH/∂∆s > 0 provided that pH > pL, and ∂ΠH/∂pL > 0;
on the other hand, according to (19) ∂pL/∂∆s > 0. Therefore we may con-
clude that also in case (c) firm H has the incentive to set the maximum
quality:

sH3 = s

On the other hand, using (19) profits of firm L can be written as

ΠL =
1

72

(1 + 3u)

(1 + u)

sL
∆s

µp
3 (1− u)

q
3s2L (1− u) + 2∆2

s (1 + 3u)− 3sL (1− u)

¶
Through tedious calculation we obtain that the optimal choice of the low
quality sL is given by

sL3 = ρ (u) s

where ρ (u) is the following (rather complicated) function:9

ρ (u) =
1

2

9u+ 7
3u+ 5

+ z −
s
2α 3
√
abz − 2 23 (ab) 23 z − βz − γ 3

√
ab√

b 3
√
abz


9Indeed, the first order conditions for profit maximization are satisfied for sL = ρsH ,

where ρ is a root of the following polynomial of degree 4:

(3u+ 5)Z4 − (18u+ 14)Z3 + (36u+ 12)Z2 − (24u+ 8)Z + 6u+ 2

where, contrary to the previous cases, the coefficients are a function of the concentration
parameter. By setting u = t+ 1 and Z = x+ 1, the above polynomial can be written as

3tx4 − 6tx3 + 6tx+ 3t+ 8x4

Formal analysis of the latter shows that it has two complex roots and two distinct real
roots for −12815 ≤ t ≤ 0, and therefore for all relevant values of u. By choosing the real
root such that ρ (u) < 1 (i.e. sL < sH) we obtain the solution in text. As to the second
order conditions, it can be checked that they are verified by substituting specific values of
u in the second order derivative and evaluating it at the optimal sL.
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with

a =

µ
9 (3u3 − 5u2 + u+ 1)+

+
√−135u6 − 702u5 + 2223u4 − 1220u3 − 633u2 + 354u+ 113

¶
b =

¡
27u3 + 135u2 + 225u+ 125

¢2
α = 9

¡
3u3 − u2 − 7u+ 5¢

β = 4
3
√
2
¡
243u6 + 1458u5 + 2889u4 + 1260u3 − 2475u2 − 2750u− 625¢

γ = 2
¡
27u3 + 207u2 − 111u− 123¢

z =

s
α 3
√
ab+ 2

2
3 (ab)

2
3 + β

3
√
ab
√
b

Therefore, at the subgame perfect equilibrium, the prices set by the two firms
are:

pL3 (u) =
1

12

ρ (u)

(1− ρ (u))
sδ (u)

pH3 (u) =
3 + u

8
s (1− ρ (u)) +

1

24

ρ (u)

(1− ρ (u))
sδ (u)

where

δ (u) =
p
3 (1− u)

q
3 (ρ (u))2 (1− u) + 2 (1− ρ (u))2 (1 + 3u)−3ρ (u) (1− u)

so that the indifferent consumers are identified by the following income in-
deces:

θL3 (u) =
1

12

1

(1− ρ (u))
δ (u) (21)

θH3 (u) =
3 + u

8
− 1

24

ρ (u)

(1− ρ (u))2
δ (u) (22)

We are now ready to use our solutions of cases (a) to (c) to discuss the perfect
equilibrium of the game as a function of the dispersion parameter u.

3.4 Perfect equilibrium

In the previous section we have solved for prices and qualities by constraining
stategies to generate alternative positions of the indifferent consumers. In or-
der to fully parametrize the solution on the income concentration parameter,
we now verify which of these solutions actually applies for each value of u.
This procedure requires two steps. First of all, for each solution we identify
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the range of values of u such that such solution is internally consistent (i.e.,
it satisfies the assumptions under which it is derived). Second, in case there
were values of u delivering more than one internally consistent solution, we
verify which constrained solution satisfies the Nash equilibrium properties,
when the constraint on the position of the marginal consumers is relaxed.
The solution of case (a) holds provided that θH (u) and θL (u) lie in the

modal area. Therefore, using (7) and (8) this constrained solution is consis-
tent provided that

θL1 (u) =
3

32
+

u

32
≥ 1− u

2

which implies

u ∈
·
13

17
, 1

¸
.

The solution of case (b) has been derived under the hypothesis that θH (u)
and θL (u) lie in the left tail area. Using (13) and (14), consistency is ensured
by the condition

θH2 (u) = 0.36958
p
(1− u2) ≤ 1− u

2

which defines the following range of values of u:

u ∈ [0, 0.29336]
Finally, case (c) offers a solution which holds when θH (u) lies in the

modal area and θL (u) lies in the left tail area. On the basis of (21) and (22)
the following inqualities must be satisfied:

θL3 (u) =
1

12

1

(1− ρ (u))
δ (u) ≤ 1− u

2

θH3 (u) =
3 + u

8
− 1

24

ρ (u)

(1− ρ (u))2
δ (u) ≥ 1− u

2

which are verified for
u ∈ [0.28712, 0.77124]

One may notice that there are very small intervals of u such that more
than one solution turns out to be consistent. This happens for those values
of u such that one of the two indifferent consumers gets close to the kink of
the distribution. In particular for u ∈ £13

17
, 0.77124

¤
it is possible to define

consistently both a type (a) and a type (c) constrained solution, while for
u ∈ [0.28712, 0.29336] both a type (b) and a type (c) constrained solution
can apply.

13



For all values of u which deliver only one internally consistent solution,
this constrained solution is also the solution of the game with no constraints
in the space of strategies. However, when two constrained solutions present
themselves, each of them must be checked against profitable deviations in-
volving an enlargment of the strategy space beyond that defined by the con-
jectured positions of the marginal consumer.
Consider first u ∈ £13

17
, 0.77124

¤
and case (a) solution. For it to be the un-

constrained Nash equilibrium, it should not be profitable for firms to choose
an alternative strategy which would deliver a case (c) internally consistent
solution. Since firm H always chooses the maximum quality, it is enough to
focus on firm L. We have to compare firm L’s profits under case (a) solution,
and the profits it could obtain if it set an alternative quality such that the
case (c) equilibrium prices of L and H evaluated at that quality moved θL in
the left tail area. The best of these alternative strategies is case (c) optimal
quality sL3. Therefore the above comparison boils down to a direct compar-
ison of maximum profits in cases (a) and (c). It can be checked numerically
that for u ∈ £13

17
, 0.76779

¢
profits of firm L are higher under case (c) solution,

while the opposite holds for u ∈ (0.76779, 0.77124] . A similar reasoning al-
lows to show that for u ∈ [0.28712, 0.29336] the case (b) solution applies up
to u = 0.29033, while case (c) solution holds from that value onwards.10

4 Price, quality and income concentration
The analysis developed in the previous section allows to identify the solution
of the model for all values of the concentration index u. The pattern of
some relevant endogenous variables is shown in Figure 2, drawn under the
assumption that the maximum quality s be equal to 1.
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Figure 2a: pH (u).

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

0 0.2 0.4 0.6 0.8 1u

Figure 2b: pL (u)

10Clearly, for u = 0.76779 and u = 0.29033 the model exhibits multiplicity of equilibria.
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Figure 2.c: sL (u)
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Figure 2.d: Sales of L and H

It is immediately apparent that for many variables the overall pattern is
not monotone. On the one hand, the qualitative behaviour of prices, low
quality and equilibrium sales differ across the intervals of u defined above;
on the other hand, there are variables which behave non monotonically even
within those intervals. This suggests that changes in income concentration
have a different impact on market equilibrium depending on initial condi-
tions, i.e. depending on whether they affect a more or less dispersed initial
distribution. Accordingly, in order to understand the economics behind the
pattern of endogenous variables, it is useful to analyse the three intervals
separately.

4.1 High dispersion at the initial conditions

This is the situation in which case (a) solution is the perfect Nash equilibrium,
holding for u ∈ [0.76779, 1], according to the above discussion. It is clearly
a rather simple case. Optimal qualities are both unaffected by u, while both
pH1 and pL1 (and hedonic prices) are increasing in u, so that they decrease
as incomes become more concentrated. Moreover, concentration implies an
increase in equilibrium sales (market coverage), and a slight increase in profits
for both firms.

Fig.3a: Income concentration;case (a) Fig.3b: Reaction functions:price stage
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Figure 3 helps us to capture the intuition underlying these results. In
Figure 3a two trapezoids are drawn, the solid one being the initial distrib-
ution. With θH and θL we denote the indifferent consumers at the initial
conditions. The figure makes clear what happens when the distribution be-
comes more concentrated: at the initial equilibrium the demand faced by
firm H increases, since all previous customers still patronize that firm, while
there is an inflow of new customers belonging to the pool of consumers which
move from the left tail area to the modal area. From this pool new customers
arise also for firm L, adding to the previous ones. For firm H the increase in
demand is accompanied by an increase in demand elasticity which prompts
a decrease of pH . Elasticity of demand for firm L, which is unchanged at the
initial equilibrium, increases as pH decreases. In turn, the reduction of pL
increases the elasticity of H’s demand, thus stimulating a further reduction
in its price.
This process is mirrored in the behaviour of the (positively sloped) re-

action functions of the price stage, represented in Figure 3b. Firms H’s
reaction function HH shifts downwards to HH1, due to the increase in de-
mand elasticity. The reaction function of L has two properties which deserve
attention. First, it does not depend on u, and this reflects the insensitivity of
L’s demand elasticity to distributional shocks. Second, L’s reaction function,
LL, is a ray from the origin. Both these properties are due to the density
function being a constant within the limits of integrations θL and θH , and
therefore on DL being homogenous of degree 1 in prices. Given this shape of
the reaction function of L, at the new equilibrium in prices, the price ratio
pH/pL is unchanged — which amounts to saying that prices depend on u only
through a (common) multiplicative factor.
This brings us to the analysis of the optimal qualities. In this, as in all

the other cases, the choice by H of the maximum quality depends on quality
being costless. As for firmL, the homogeneity in prices of its demand function
together with the associated properties of optimal prices, imply that u enters
the profit function at the quality stage only through a multiplicative factor.
The optimal choice of sL is thus independent of u.11

4.2 Low dispersion at the initial conditions

When at the initial conditions incomes are highly concentrated and the Nash
equilibrium is given by case (b) solution, u ∈ [0, 0.29033], our model still
delivers optimal qualities which are insensitive to changes in income concen-

11Alternatively, one could say that the elasticity with respect to sL of both the optimal
price of L and its demand at the quality stage are independent of u.
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tration; however, a negative relation arises between optimal prices and u.
As incomes concentrate towards the middle, both pH and pL increase. The
equilibrium sales of the two firms are unchanged and therefore their profits
increase.
We can interpret these results along the same lines as above. Figure 4a

shows clearly that the impact effect of an increase in concentration is an
increase in the demand for H and a decrease in the demand for L: since the
initial distribution is in itself concentrated, a further decrease in u generates
a small inflow of new consumers in the market patronizing the L firm, and
a more relevant outflow of consumers from the L to the H firm. Contrary
to the previous case, for firm H the increase in demand is associated to a
decrease in demand elasticity and this prompts, ceteris paribus, an increase
in pH . The positively sloped reaction function of H of the price stage of the
game shifts upwards in HH1 (Figure 4b).12

Fig.4a: Income concentration;case (b) Fig.4b: Reaction functions:price stage

As far as demand for L is concerned, since the density function is linear
within the limits of integrations θL and θH , it is homogenous of degree 2 in
prices. This in turn implies that its elasticity is insensitive to u, and that the
reaction function of L at the price stage is a again a ray through the origin.
The new equilibrium is characterized by higher prices for both firms, due to
strategic complementarity, with an unchanged price ratio.
The quality stage of the game has exactly the same properties of case (a).

12Notice that the equations of the reaction functions of theH and L firm are respectively:
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4.3 Intermediate dispersion at the initial conditions

The analysis of the previous two situations was made easier by the invariance
of qualities with respect to u (within its given intervals). This obviously
depended on the specific properties of our trapezoid distribution, which in
those cases conferred desirable homogeneity properties to the demand faced
by firm L. Invariance of qualities means that changes in u do not create
any incentive for firm L to alter the intensity of price competition through a
different quality strategy.
For intermediate values of u, u ∈ [0.29033, 0.76779], a situation arises

in which, as u decreases, the low quality firm perceives a strong incentive
to soften a potential price competition by the high quality one, through a
reduction of quality, i.e. a stronger product differentiation.

Fig.5a: Income concentration; case (c) Fig.5b: Reaction functions:price stage

The impact effect of an increase in income concentration in this case
is represented in Figure 5a. As in case (a), the demand and the demand
elasticity of H both increase. By contrast, the demand faced by L and its
elasticity move in opposite directions. In particular, when u is close to the
upper bound of the interval, demand increases and its elasticity decreases;
the opposite holds for u close to the lower bound. The non-monotone be-
haviour of DL is intuitive: when dispersion is still high a significant inflow
of new consumers more than outweights the outflow towards the high qual-
ity firm; the opposite holds when the initial conditions are close to those
of case (b). The non monotone behaviour of price-elasticity depends on the
twofold marginal impact of a change of pL, at the extremes of L’s market
share: demand becomes more elastic at the richest extreme and less elastic
at the poorest extreme. The overall impact of a decrease in u depends on
the balancing of these two effects — demand becoming more inelastic (elastic)
when L’s demand increases (decreases).
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According to the above, as u decreases, at unchanged qualities the optimal
price of H for given pL decreases; while, for given pH , L may increase or
decrease its price. This is represented in Figure 5b, which shows the reaction
functions of the price stage at the initial qualities. The reaction function of
H shifts downwards from HH to HH1; we assume that the initial conditions
are such that the reaction function of L shifts leftwards from LL to LL1.
Prices decrease for both firms.
In this case, however, at the quality stage of the game firm L may im-

prove its performance by softening price competition. Its reaction function in
qualities is a ray from the origin, the slope of which is an increasing function
of u. Therefore, incomes concentration induces a stronger product differen-
tiation. The wider qualitative distance between the two firms induces both
to change their prices: given pL, the optimal price of H increases, and its
reaction function shifts upwards to HH2. Given pH , firm L compensates the
lower quality of its product through a reduction of its price, and its reaction
function shifts leftwards to LL2. At the new perfect equilibrium pH is higher
and pL is lower than their initial values. Notice that if we had assumed initial
conditions such that, at unchanged qualities, the impact of a decrease in u
was to induce a rightward initial shift of LL, then the effect of the quality
change on pL might have not been sufficient to ensure that the latter is in-
deed lower at the new perfect equilibrium. For values of u close to the upper
bound of this case, both prices increase at the two-stage equilibrium.

5 Concluding remarks
In this paper we have developed the analytical solution of a model of ver-
tical differentiation with a non-uniform distribution of consumers’ incomes
and uncovered market. We have parametrized its solution to the value of a
concentration parameter, which is a mean preserving spread over a fixed sup-
port. To our knowledge, this is the first attempt to solve explicitly a model
with these properties — which has been possible through the useful device of
modeling income distribution as a trapezoid.
The above discussion has shown that the comparative statics analysis on

the effects of income concentration is strongly dependent on initial condi-
tions. However, it is possible to offer some general considerations on the
overall effects of this kind of distributional phenomenon on market equilib-
rium. First of all, the extent of product differentiation does depend on the
degree of income concentration. Within the framework of uncovered mar-
ket, the existence of this link has never been pointed out in the literature.
Our analysis shows that the standard invariance of quality result depends
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heavily on limiting distributional shocks to being simple shifts or stretch-
ings of a uniform distribution. More precisely, if we assume that quality is
costless, qualities turn out to be independent of the distribution of income
only when the income shock preserves the linearity of the density function
for all income classes of consumers patronizing firm L — our cases (a) and
(b). Overall, more concentrated incomes imply larger product differentiation:
the presence of a large share of consumers in middle income classes stimu-
lates a price competition, whose effects are dampened by firm L through an
enlargment of the quality spread. Greater consumers’ homogeneity creates a
more competitive market environment,13 which fosters an enlargment of the
quality differential.14

Moreover, our model confirms the intuition that a more concentrated in-
come distribution extends the coverage of the market and favours the high
quality firm. On the one hand, moving from the uniform to the triangular
distribution, the market coverage increases from 87.5% to 96.9% of the mar-
ket. On the other hand, the high-quality advantage, measured by the ratio
of the firms’ profits, increases as we move from the high dispersion to the low
dispersion case — it is ‘small’ and constant within case (a), ‘big’ and constant
within case (b) and strictly increasing in case (c).
Finally, some remarks on the robustness of our results are in order. Leav-

ing aside the peculiarities generated by the linearities (e.g. the invariance of
qualities for some intervals of the concentration parameter), it is clear that
the patterns described in each of the cases we have analysed may or may not
appear under more regular distribution. However, our stylized distribution
allows to identify the key economic mechanism at work and their interplay.
The crucial element is the impact change in demand size and demand elastic-
ity generated for each firm by the distributional shock. This clearly depends
for both firms on initial conditions. Strategic complementarity at the price
stage then defines the extent of price competition. The tougher is the latter,
the greater is the incentive to increase product differentiation.

13It is in this sense that this model confirms the intuition that stronger consumers’
homogeneity may favour market competitiveness — see e.g. Benassi, Chirco and Scrimitore
(2002) and Benassi, Cellini and Chirco (2002).

14This result is consistent with that obtained by Wauthy (1996), who suggests a nega-
tive relationship between income dispersion and the degree of product differentiation, by
extending the support of a uniform distribution under full market coverage.
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Appendix

Proof of Proposition 1
Consider firm H’s First Order Condition for maximum profits in the price
game:

1− F (θH)− pH
sH − sL

f(θH) = 0

which can be written as
1− F (θH) = b(θH) (A.1)

where b(θH) = (θH + a) f(θH) and a = pL/(sH − sL) > 0. We are going to
show that a > 0 implies θH < 1/2 when this equation satisfied. Since in
equilibrium one must have θL < θH and any perfect equilbrium implies a
Nash equilibrium in prices at which (A.1) holds, the result follows. We treat
a as a positive constant, and letting primes denote derivatives observe the
following:
(1) the LHS is monotonically decreasing from 1 to zero.
(2) the RHS is increasing so long as f 0(θH) ≥ 0, since b0(θH) = f(θH) +

(θH + a) f 0(θH); notice that b(·), a continuous function, is such that b(1) =
b(0) = 0: hence it has at least a maximum at some bθH . The latter has to
satisfy bθH > 1/2, as by construction b0(θH) = f(θH) + (θH + a) f 0(θH) > 0
for f 0(θH) ≥ 0, which is certainly true for θH ≤ 1/2.
(3) b(1/2) = (a+ 1/2)f(1/2) > 1/2 = 1− F (1/2).

All of which gives the following. By (3), b(1/2) > 1 − F (1/2); but since
b(0) = af(0) = 0 < 1− F (0) = 1, there is one θ∗H < 1/2 such that equation
(A.1) holds; due to (1) and (2), θ∗H is unique over [0,bθH ], with the second
order conditions for firmH implying that 1−F (θH) cuts b from above (hence,
its derivative is less than that of b at θ∗H). For θH > bθH > 1/2, 1 − F (θH)
cannot cross again b(θH) from above. Indeed, suppose that such a point, θ0H
say, exists: that would imply a further crossing at a point θ

◦
H ∈ (bθH , θ0H) such

that

−2f(θ◦H)− (a+ θ
◦
H)f

0(θ
◦
H) > 0 (A.2a)

−2f(θ0H)− (a+ θ
0
H)f

0(θ
0
H) < 0 (A.2b)

that is, A = 2[f(θ
0
H)−f(θ

◦
H)]+a[f

0(θ
0
H)−f 0(θ

◦
H)]+[θ

0
Hf

0(θ
0
H)−θ

◦
Hf

0(θ
◦
H)] > 0,

which cannot be true since 1/2 < θ
◦
H < θ0H implies f(θ

◦
H) ≥ f(θ

0
H) and

0 ≥ f 0(θ
◦
H) ≥ f 0(θ

0
H) so that in fact A < 0 and we have a contradiction: if

(A.2a) holds, (A.2b) cannot hold.¥
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