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Abstract

In this paper we propose a standard Solow model augmented with
public capital in the production function. The model solution dis-
plays two steady states, an unstable poverty trap and an efficient
stable equilibrium. As a result the model predicts both divergence
and non monotonic convergence; that is a transition path charac-
terized by increasing growth rates up to the point where traditional
convergence behavior describes the successive evolution towards the
stationary equilibrium. Using traditional cross section techniques the
hypothesis of non monotonic conditional convergence is tested against
a large sample of coutries, obtaining favorable evidence.
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1 Introduction

The traditional Solow [27] growth model has provided an exceptionally fertile
framework to address the two central questions of growth: ”why are rich and
poor economies characterized by vast differences in per capita income?” and
its dynamic implication ”does the income gap between the poor and the
rich tend to vanish, to persist, or to increase over time?”. The availability
since the mid 1980s of internationally comparable data for a large number of
countries1 has made the above question the challenge of empirical research,
starting an outstanding run between evidence, theory, and methodological
issues.
This research has centered around the ”convergence debate”. That is, the

neoclassical growth theory prediction that less developed economies should
grow faster than richer ones, as far as they approach the same steady state.
As it is well known in the convergence literature, considering post World War
II data, samples of rich countries (such as OECD, but also regions and prefec-
tures within a given country)2 have displayed marked convergence, whereas
no convergence or even a slight divergence emerges from larger samples of
countries.
To the purpose of locating our contribution within the huge variety of

papers aimed at addressing this puzzling evidence, we survey the existing
literature along two alternative hypotesis on technology (see figure 1)3.
On the one side, the persistence over time of output per worker differ-

ences motivates an endogenous growth approach. This relies on increasing
returns to scale and spillover or external effects between sectoral and national
level (Romer [24], Romer [25], Lucas [19], King and Rebelo [18], Rebelo [23],
Grossman and Helpman [13]). As a consequence of the departure from the di-
minishing returns to capital assumption, different economies may perpetually
diverge or not converge depending on their starting point conditions, even
if they share identical structure (population growth, institutional settings,
time preferences, market structure, etc.).
From the left side of figure 1 depart two competing explanations of non-

convergence based on the same traditional neoclassical specification of the

1The most update version of this international data collection refers to Summer and
Heston [28].

2See for example Barro and Sala-i-Martin [5], Sala-i-Martin [26].
3More exhaustive surveys can be found in Barro and Sala-i-Martin [5], Quah [21],

Sala-i-Martin [26], Galor [11], Capolupo [7], De la Fuente [10].
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production function: ”conditional convergence” and ”club convergence”.
The conditional convergence approach emerges from neoclassical growth

models displaying a unique non-trivial stable steady state (Ramsey [22],
Solow [27], Cass [9]), which implies that the growth rate of per capita income
declines as the economy approaches to its long run equilibrium. Therefore,
different countries should converge to one another in their levels of output per
capita as long as they are characterized by the same structure, independently
of their initial conditions.
Several contributions have tested the above prediction, employing cross

country regressions motivated on the ground of the neoclassical one sector
growth theory. Barro [3], Mankiw, Romer, and Weil [20], Barro and Sala-i-
Martin [5], Sala-i-Martin [26] report supportive evidence of conditional con-
vergence considering large samples of countries4.
However, various papers offer arguments and evidence that make ques-

tionable the conditional convergence hypothesis. Benhabib and Gali [6] re-

4Alternatively, a panel estimation approach can be employed. See for example Islam
[15] [16], Arellano and Bond [1], and Caselli et al. [8]. For a debate between cross section
vs panel estimation see Goddard and Wilson [12].
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port evidence against convergence, testing the correlation between growth
rates and capital/output ratios, considering two successive subsamples of ten
years and a set of countries including the less developed economies Adopting
a theoretical setting similar to Mankiw, Romer, and Weil [20], Jones [17] em-
pirically analyzes the steady state distribution of per capita income, reporting
that ”holding differences in technology levels constant, the world income dis-
tribution will be characterized by additional divergence at the bottom and
convergence and overtaking at the top” (pp. 147-148).
These criticisms to the conditional convergence hypothesis point in favor

of an alternative exlanation of nonconvergence, based on the concept of ”club
convergence”. Retaining the standard neoclassical assumption about tech-
nology, an overlapping generation setting is able to generate multiple locally
stable steady states (Galor[11]). As a result, different countries starting their
transition with different stocks of production factors, may end up in different
steady states 5.
The economic theory of the present paper is based on a variation of the

augmented Solow model by Mankiw, Romer, and Weil [20], that generates
multiple steady states. For this reason, in figure 1 our contribution find place
between ”conditional convergence” and ”club convergence”. In particular,
we consider a production function with traditional properties, with private
capital, public capital and labor as factors of production. Public capital is
provided by the goverment through non distortionary taxation. Assuming
the public sector objective to be the maximization of per capita consumption
in the long run, the model solution displays two steady state levels of capital
per effective worker. The Pareto optimum steady state is stable, whereas
the Pareto inferior one is unstable. As a consequence, the model predicts
both divergence for low levels of initial private capital, and non monotonic
conditional convergence for levels of capital between the two steady state
values. The non monotonic convergence result predicts that the transition
towards the non trivial steady state is characterized by increasing growth
rates in per capita income (I-convergence) up to the point where the tradi-
tional convergence behavior (II-convergence) eventually brings the economy
to its stationary equilibrium. Therefore, the model enables a new interpre-
tation of the significance level of the β-convergence parameter estimated in
”old regressions”. In particular, evidence of β-divergence might be evidence

5See Azariadis [2] for an extensive survey, as well as for survey criticism to the condi-
tional convergence hypothesis.
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of conditional I-convergence; whereas, not statistically significant estimates
of the speed of convergence might suggest that the sample of countries lies
between I-convergence and II-convergence.
To test the above prediction we consider a large sample of countries or-

dered by their initial real per capita income. Then we run standard condi-
tional convergence regressions, splitting the country sample into successive
sub-samples and moving from the poorest economies to the richest ones. Em-
ploying this procedure we find favorable evidence to the hypothesis of non
monotonic convergence.
The remainder of the paper is organized as follows. In section 2 we

present the model and derive the steady state solutions. Section 3 offers a
new quantitative interpretation of the Mankiw, Romer and Weil [20] regres-
sions aimed at explaining the cross country per capita income differences. In
section 4, we formally introduce our non monotonic conditional convergence
hypothesis, the estimation procedure and the empirical findings. Section 5
summarizes the main results obtained.

2 The model

We assume the aggregate output Y (t) to be generated by a constant returns
to scale technology which employs private capital K (t), labour L (t), and
public capital H (t)

Y (t) = K (t)αH (t)β [A (t)L (t)]1−α−β (1)

0 < α < 1, 0 < β < 1,α+ β < 1

where A (t) represents labor-augmenting technical progress. A (t) and
L (t) are assumed to grow at the exogenous rates x and n:

A (t) = A (0) ext

L (t) = L (0) ent

In our context, public capital should be interpreted as an aggregate good
including all those factors of production that are not autonomously provided
by the private sector, typically infrastructures, but also the fraction of human
capital which accumulates through public spending on education.
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Total output is divided between consumption C (t), private investment
I (t), and public investment G (t):

Y (t) = C (t) + I (t) +G (t)

Given δH the rate of depreciation of public capital,H (t) evolves according
to

Ḣ (t) = G (t)− δHH (t) = g (t)H (t)− δHH (t) (2)

where g (t)H (t) = G (t) represents gross public investment and g (t) is the
discretionary rate of public capital accumulation settled by the government.
We assume that the government runs a balanced budget, financing its

expenditures through lump sum taxation. Therefore, gross private expendi-
ture devoted to the accumulation of K (t) is a fraction s of total disposable
income (Y (t) − G (t)). In addition, private capital depreciates at rate δK .
Thus

K̇ (t) = I (t)− δKK (t) = s [Y (t)−G (t)]− δKK (t) (3)

We define with lower-case letters quantities per effective unit of labor
[k = K/AL, h = H/AL, y = Y/AL]. In addition, we assume that private
capital and public capital depreciate at the same rate δK = δG = δ. Then
equations (1), (2), and (3) in intensive form are the following

y (t) = k (t)α h (t)β (4)

ḣ (t) = [g (t)− (n+ δ + x)]h (t) (5)

k̇ (t) = sy (t)− sg (t)h (t)− (n+ δ + x) k (t) (6)

Equations (4), (5), and (6) illustrate how the government influences the
private sector accumulation process of capital. On the one side, current
public investment discourages capital accumulation, because taxation reduces
the amount of total saving that can be devoted to new investments. On the
other hand, taxation is employed to create additional factors of production,
which enhance the productivity of private capital, and the ability of the

6



private sector to generate additional saving in the future to support new
investment projects.
To characterize the steady state values for k (t) and h (t) we set k̇ (t) = 0

and ḣ (t) = 0. From equation (5) we obtain the long run growth rate g∗

consistent with a constant level of public capital per effective worker

ḣ (t) = 0→ g∗ (t) = n+ δ + x (7)

Replacing g (t) in (6) with its steady state level g∗ (t) we get

k̇ (t) = 0→ sk (t)α h∗β − s (n+ δ + x)h∗ − (n+ δ + x) k (t) = 0 (8)

with h∗ defining the steady state value of h (t).
To derive from (8) an explicit solution for the steady state value of k (t)

we have to define a specific government policy rule as to the long run level
of public capital provided to the economy. We assume that the government
chooses the level of public capital, which maximizes per capita consumption
in the steady state. Therefore, the stationary level of public capital must be
the solution to the following static optimization problem:

max c = (1− s) [f (k, h)− (n+ x+ δ)h] (9)

s.t. sf (k, h)− s (n+ x+ δ)h− (n+ x+ δ) k = 0

where c indicates per capita consumption. Necessary conditions imply
that ∂f(k,h)

∂h
≡ fh = (n+ δ + x). Substituting back into k̇ = 0 condition, we

obtain the optimal steady state values for k , h, and y:

k∗ =

"
ββ [s (1− β)]1−β

(n+ x+ δ)

# 1
1−α−β

(10)

h∗ =
·
β1−α [s (1− β)]α

(n+ x+ δ)

¸ 1
1−α−β

(11)
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y∗ =

"
ββ [s (1− β)]α

(n+ x+ δ)α+β

# 1
1−α−β

(12)

Moreover, our model implies that the government objective at pursuing
the highest per capita consumption level is equivalent to maximize the steady
state stock of private capital. Totally differentiating equation (8 ), we get:

sfk
dk (h)

dh
+ sfh − (n+ x+ δ) s− (n+ x+ δ)

dk (h)

dh
= 0

which can be set equal to zero, as we are interested in pairs of k and h that
satisfy the k̇ = 0 condition. Solving for dk(h)

dh
we get the same fh = (n+ δ + x)

condition as before6. Therefore, the long run government objective of max-
imizing per capita consumption is achieved incentivating the private sector
to invest additional resources as to reach the highest level of per capita cap-
ital as possible. To pursue this goal the government accumulates public
capital up to the point where the last unit of h displays “crowding-in” and
“crowding-out” effects on k̇(t) that exactly offset each other.
The above solution k∗ represents the unique stable steady-state of the

model-economy. However, equation (8) is also solved for an alternative value
of private capital k0 < k∗ which determines a second (unstable) equilibrium
(see figure 2). We are not able to derive an exact solution for k0.
However, we can obtain an approximated value applying the Newton

iterative procedure. It can be shown that (see Appendix A)

lim
α→0

and/orβ→0

k0 (k∗) = β
1
αk∗ (13)

We then assume (13) as the first step of the approximation procedure. As-
suming α and β to be less than 0.4, the second step of the Newton procedure
suffices to provide a good approximation for k0:

6To see the equivalence between the max c and the max k problem in a more immediate
way, derive f (k, h) from the k̇ = 0 condition and substitute into the maximand in equation
(9): the max c problem translates into a max [(1− s) (n+ δ + x) /s] k problem.
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k0 ' αβ

αβ
α−1
α − (1− β)

k∗ (14)

where the multiplicative coefficient is less than 1.
Substituting back into equation (4) and considering y∗ in equation (12)

it is easy to show that y0 is smaller than y∗ and is given by the following
expression

y0 '
Ã

αβ

αβ
α−1
α − (1− β)

!α

y∗ (15)

3 New interpretation of old regressions

Our theoretical setting allows a direct comparison with the empirical findings
reported in Mankiw, Romer andWeil [20] (MRWhenceforth) as to the ability
of the textbook Solow model to explain cross country income differences.
Using cross country data, MRW run the following regression7

ln

·
Y

L

¸
= const+ a ln s+ b ln (n+ δ + x) + ² (16)

where a =
α

1− α
; b = − α

1− α
; const = lnA(0)

Estimated coefficients enter (16) with the right signs and are highly sta-
tistically significant. Moreover, the regression accounts for a large portion
of cross-country differences in real output. However, the interpretation of-
fered by MRW of the estimated coefficients in (16) - in terms of the implied
capital share- may actually depend on the specific assumption about tech-
nology, which is adopted in the model. Indeed, assuming public capital as
an exogenous factor of production, we obtain an empirical specification of
the theoretical implications of saving and population growth on real output,
which is observationally equivalent to (16), but underlies a different interpre-
tation of the estimated coefficient.

7See MRW, table 1 p.414.
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In the steady state, per effective capita output Y (t)
A(t)L(t)

is given by equation
(12). Taking logs and simply considering output per capita we get

ln

·
Y (t)

L (t)

¸
= lnA (0) + xt+

β

1− α− β
lnβ +

α

1− α− β
ln (1− β)

+
α

1− α− β
ln s− α+ β

1− α− β
ln (n+ δ + x)

Assuming t = 0 for simplicity the previous equation specifies as

ln

µ
Y

L

¶
= const+ a ln s+ b ln (n+ δ + x) (17)

where a =
α

1− α− β
; b = − α+ β

1− α− β
;

const = lnA(0) +
β

1− α− β
lnβ +

α

1− α− β
ln (1− β)

Employing (17), we can perform an alternative interpretation of the orig-
inal findings of MRW8. Results are reported in table 1.
Table 1 relates the estimated coefficients by MRW from the textbook

Solow model perspective. The implied capital share in output appears exces-
sively high in the Intermediate and in the Non.oil sample; a more grounded
value of α is obtained within the OECD sample. The table 2 below reports
the MRW results obtained with the extended human capital model. The
α coefficients drop to half of their previous value, determining the share of
physical capital in income equal to 1

3
in the Non-oil and Intermediate sample.

The 0.14 value obtained for the OECD sample seems too low.
The upper part of table 2 reports the interpretation of the MRW esti-

mates obtained from (16) in the light of the coefficient restrictions implied
by (17). Here β and α represent the share of public and private capital in
total income respectively. The effect of public capital as an additional in-
put in the production function is to lower significantly the value of α, which
drops to 0.47 and to 0.43 for Non-oil and Intermediate, and reaches 0.28 in
the OECD sample.

8MRW test equation (16) using Summer and Heston [28] annual data over the period
1965-1985. Specifically, MRW divide the whole country set into three sub-samples: Non
oil, Intermediate, and OECD. For details see MRW pp. 412-413.
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In comparison with the MRW estimates, these α values may be regarded
as highly satisfactory: considering the Non.oil and Intermediate samples we
obtain slightly higher values, but, on the other hand, our α values for the
OECD country sample seems more realistic than the 0.14 value implied by
the MRW estimates9.
The ability of the imposed coefficient restrictions (17) to capture more re-

alistic income distribution shares between capital and labor can be remarked
by looking at the values of constants. In the regression (16), the constant re-
flects all those factors which are relevant to the aggregate production process
and are not included among the arguments inside the production function;
typically, technology, but also resource endowments, climate, and other polit-
ical, social and environmental variables. The inclusione of human capital in
MRW regression changes significantly the value of the constant, with respect
to the standard Solow model regression. We obtain very similar figures when
we calculate the aggregate factor lnA(0) by adjusting the estimated values
with the restriction in (17).

Table 1 Implied α: textbook Solow model

9Moreover, differently from the results obtained by using equation (16), the MRW
conditional convergence regression deliver implied α and β which are very close to our
findings:

Non-oil Intermediate OECD
α 0.48 0.44 0.38
β 0.23 0.23 0.23

Source: MRW [20], pp. 429, table VI
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Sample : Non-oil Intermediate OECD

const
5.48
(1.59)

5.36
(1.55)

7.97
(2.48)

lns
1.42
(0.14)

1.31
(0.17)

0.50
(0.43)

ln(n+ δ + x)
−1.97
(0.56)

−2.01
(0.53)

−0.76
(0.84)

MRW implied α
0.60
(0.02)

0.59
(0.02)

0.36
(0.15)

Source: Mankiw, Romer and Weil [20]
Table 2 Implied α and β: public capital vs human capital

Non-oil Intermediate OECD
Public capital :

const 6.69 6.72 8.54

Implied α
0.4781
(0.09)

0.4352
(0.08)

0.2841
(0.27)

Implied β
0.1852
(0.15)

0.2326
(0.13)

0.1477
(0.46)

MRW with human capital :
const 6.89 7.81 8.63

Implied α
0.31
(0.04)

0.29
(0.05)

0.14
(0.15)

Implied β
0.28
(0.03)

0.30
(0.04)

0.37
(0.12)

4 Non monotonic conditional convergence

In neoclassical growth models such as Solow [27], a country’s per capita
growth rate tends to be negatively related to its starting level of per capita
income. Therefore, poor and rich countries should converge in terms of per
capita income levels after controlling for the determinants of the steady state
(conditional convergence).
Our specification of technology, however, determines two steady state

values of per capita income, of which one is unstable, whereas the other one
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proves to be stable and Pareto efficient. As a consequence, a country can
display convergence or divergence depending on the value of the starting level
of income per capita. In the convergence situation, however, the relationship
between the growth rate of real per capita income and the starting level of
real income is not monotone. Figure 3 gives a geometric interpretation of the
result. The differerence between sy/k and (n + δ + x)(sh∗/k + 1) measures

the rate of growth of (private) capital. For values of k at the left of k
0
, (

·
k/k)

is negative: the government spending aimed at maintaining a constant stock
of public capital is excessive with respect to the size of the economy. As a
consequence, private investment is crowded out, resulting in negative rates of
capital accumulation.Between k

0
and k∗ the economy displays non monotonic

convergence: the rate of growth of capitale increases as the accumulation
process moves towards k∗, reaching a maximun in k = k Moving on from

k, higher levels of capital are associated to decreasing growth rates of (
·
k/k),

providing the traditional convergence result.

We define the positive correlation between k and (
·
k/k) for k

0
< k ≤ k as I-

convergence (or convergence of the I type), and we refers to II-convergence (or
convergence of the second type) to indicate the negative correlation between

k and (
·
k/k) for k < k ≤ k∗ .

To test the non monotonic conditional convergence hypothesis we have to
make an assumption about the public sector behavior in the neighborhood of
k∗. A reasonable possibility might be to assume, that the government aims
at reaching the efficient long run equilibrium in the shortest time as possible.
Due to the non distortionary character of taxation, the above minimum time
problem turns out to have no solutions (see the Appendix C for details). An
important implication is that whatever fiscal policy rule is assumed in the
neighborhood of the steady state, it turns out to be arbitrary. In the present
continous time context, the only restriction required under our lump-sum
financing assumption, is that in the last period, just before reaching the
steady state, ḣ must be non positive10. Therefore, in the present contest, to
work out testable predictions of the model, we simply consider that

.

h = 0,
with h(t) = h∗. This assumption corresponds, for example, to a policy rule
aimed at accumulating the optimal stock of public capital as fast as possible,
and then leaving the market mechanism autonomously reaching the optimal

10See the Appendix C for a formal proof.
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long run position11.
Let y∗ and y0 be the steady state levels of income per effective worker

given by equation (12) and (15), and let y(t) be the actual value at time t.
Approximating around the steady states, at the left of y∗ and at the right of
y0 respectively, the speeds of convergence are given by

d ln y (t)

dt
= λ [ln y∗ − ln y (t)] (18)

d ln y (t)

dt
= λ [ln y (t)− ln y0] (19)

where
11In the discrete time context, the ḣ = 0 assumption in the neighbourhood of the

steady state is perfectly plausible. Indeed, to reach k∗ in period T , it must verified that
(hT − hT−1) = 0, which implies that hT−1 = h∗.
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λ = (n+ x+ δ)
1− α− β

1− β

We can obtain quantitative predictions about the speed of I-convergence
and II-convergence towards the steady state, following the MRW procedure.
For technical details see Appendix B.
At the left neighbour of the stable steady state y∗ we get

ln

·
Y (t)

L (t)

¸
− ln

·
Y (0)

L (0)

¸
= xt+ a1 lnA (0) + a1const1 − a1 ln

·
Y (0)

L (0)

¸
+

+a1
α

1− α− β
ln s− a1 α+ β

1− α− β
ln (n+ δ + x) (20)

while at the right neighbour of the unstable steady state y0 we have

ln

·
Y (t)

L (t)

¸
− ln

·
Y (0)

L (0)

¸
= xt− a2 lnA (0) + a2const2 + a2 ln

·
Y (0)

L (0)

¸
+

+a2
α

1− α− β
ln s− a2 α+ β

1− α− β
ln (n+ δ + x) (21)

with the followin parameters restrictions on coefficients
const1 =

β lnβ+α ln(1−β)
1−α−β < 0

a1 =
¡
1− e−λt¢ > 0

const2 =

½
β lnβ+α ln(1−β)

1−α−β + α ln

·
αβ

αβ
α−1
α −(1−β)

¸¾
< 0

a2 =
¡
eλt − 1¢ > 0

Coefficients associated to ln s and ln (n+ δ + x) in equations (20) and
(21) have the same sign. However, the effect of the starting level of real in-
come per capita is positive and negative provided that the cross section sam-
ple displays I-convergence and II-convergence respectively. In other words,
the same regression explaining real per capita income growth rate with ln s,
ln (n+ δ + x), and ln [Y (0) /L (0)] as regressors indicates I-convergence when
the coefficient of ln [Y (0) /L (0)] is positive, and II-convergence, as the coef-
ficient of ln [Y (0) /L (0)] is negative
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Figure 4:

Within this framework, an ambiguous sign and a non significance result
can be interpreted with the presence of countries in the sample located both
in I and II convergence regions.
To find empirical evidence we employ data from the Penn World Table

(Mark 5.6 a) over the period 1960-1990, which include: real GDP per capita,
real investment share of GDP, and population. Data on per capita GDP
growth rate, calculated as the log difference of per capita real GDP in 1990
and per capita real GDP in 1960, and per capita real GDP level in 1960 are
plotted in figure 4 for the entire sample (86 countries).
To test the non monotonic convergence assumption, we decided to split

the sample into smaller groups of countries sharing more homogenous starting
conditions. The basic idea is that, after controlling for differences in saving
and population growth rates, in 1960 the poorest countries were more likely
to be in the I-convergence situation, whereas the richest ones were probably
experiencing their transition path within a II-convergence situation. To this
purpose, we have sorted all countries with reference to real per capita GDP
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Figure 5:

in 1960, from the lowest to the highest level. Then we have considered groups
of 30 countries, changing the sample by moving of 5 items (dropping the first
5 poorer and taking the next 5 richer countries). The moving samples show
I-convergence when per capita income is low, ambiguous or no correlation for
middle income samples and II-convergence results for high-income countries
confirming our theoretical findings. Results are reported in table 3 and shown
in figure 5.
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Table 3 Testing conditional non monotonic convergence (std.err. in brakets)
Sample const log(gdp60) log(n+δ+x) log(s) Adj. R2

rgdp60<930 -4.8080 0.6703 -0.2016 0.6407 0.5464
(3.7926) (.3606) (1.2139) (.1297)

400<rgdp60<1050 2.7039 0.2007 -2.2909 0.4703 0.2903
(3.5557) (.4713) (1.4308) (.1549)

540<rgdp60<1110 4.3937 0.0860 -2.8384 0.5372 0.3750
(3.0577) (.4471) (1.3293) (.1442)

632<rgdp60<1180 10.1420 -0.3091 -4.4079 0.5961 0.4859
(3.7684) (.4153) (1.4088) (.1320)

650<rgdp60<1300 8.2204 0.1132 -4.8840 0.5661 0.5239
(4.5667) (.5546) (1.5543) (.1196)

810<rgdp60<1620 10.2795 -0.1727 -4.8998 0.5751 0,5711
(4.3766) (.4753) (1.3791) (.1129)

930<rgdp60<1720 8.7649 -0.0025 -4.7383 0.5472 0.5910
(4.1589) (.4070) (1.2603) (.1072)

1050<rgdp60<2050 6.6482 -0.5381 -1.9197 0.6416 0.5820
(3.6766) (.4231) (.8448) (.1187)

1110<rgdp60<2850 3.1641 -0.1385 -1.5567 0.6008 0.5079
(3.4123) (.3771) (.8220) (.1356)

1180<rgdp60<3500 3.6846 -0.3011 -1.3392 0.6945 0.4891
(3.0087) (.3069) (.7473) (.1624)

1300<rgdp60<5200 2.5075 -0.4631 -0.7962 1.1394 0.5144
(2.7479) (.2156) (.6565) (.2350)

1620<rgdp60<6100 1.9916 -0.4651 -0.7207 1.2601 0.5396
(2.5600) (.1820) (.6469) (.2577)

1720<rgdp60<7250 1.4921 -0.3824 -0.6780 1.1816 0.4742
(2.0856) (.1362) (.5107) (.2946)

rgdp60>2050 2.9713 -0.5358 -0.5465 1.0546 0.5771
(1.6705) (.1100) (.4513) (.2355)

OECD sample 4.1910 -0.4336 -0.9244 0.6164 0.7416
(1.1266) (0.0599) (0.3707) (0.2025)

Equations (20) and (21) imply a positive coefficient for ln s and negative
for ln(n + δ + x). Moreover, these signs comes out to be verified for each
sub-sample. However, the coefficient of ln(n + δ + x) should be higher (in
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absolute value) than the coefficient of ln s; this is not verified for the first
sample and for the richest four samples (countries with a real GDP grater
than 1,300 $), implying a negative share for public capital (see table 4). This
result is not new in the empirical literature of growth. See for example Islam
[15].

Table 4 implied α, β, λ for all sub-samples

Sample α β λ
rgdp60<930 .7348 -.5036 .0171

(1.7959) (2,1444) (.0072)
400<rgdp60<1050 .1888 .7307 .0061

(.2247) (.2324) (.0131)
540<rgdp60<1110 .1837 .7869 .0028

(.1450) (.1880) (.0137)
632<rgdp60<1180 .1264 .8081 .0123

(.0636) (.1027) (.0106)
650<rgdp60<1300 .1133 .8641 .0036

(.0642) (.1095) (.0166)
810<rgdp60<1620 .1134 .8526 .0063

(.0594) (.0881) (.0135)
930<rgdp60<1720 .1154 .8841 .0001

(.0637) (.0740) (.0135)
1050<rgdp60<2050 .2611 .5200 .0257

(.1699) (.1629) (.0092)
1110<rgdp60<2850 .3544 .5639 .0050

(.3469) (.2064) (.0110)
1180<rgdp60<3500 .4234 .3931 .0119

(.3489) (.2490) (.0079)
1300<rgdp60<5200 .9047 -.2725 .0207

(.5804) (.6490) (.0049)
1620<rgdp60<6100 1.0626 -0.4549 .0209

(2.5600) (.1820) (.6469)
1720<rgdp60<7250 1.1143 -.4749 .0161

(.6651) (.6705) (.0033)
rgdp60>2050 .9745 -.4695 .0256

(.5319) (.5812) (.0024)
OECD sample .4539 .2268 .0189

(.2677) (.2434) (.0014)
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For a direct comparison with MRW findings we also estimated the conver-
gence equation for the OECD group. In this case (see table 4), the implied
physical capital share α, the human/public capital share β, and the conver-
gence speed λ are very close to the MRW values, obtained in the restricted
convergence regression including a measure of human capital among the ex-
planatory variables12.
Finally, we observe that the average speed of convergence is increasing

for richer countries in terms of per capita 1960 real GDP. A country appears
to move slowly away from the unstable steady state. In contrast when it
approaches the Pareto superior stable steady state the dynamics gets faster.

5 Concluding remarks

In this paper we propose a standard Solow model augmented with public cap-
ital in the production function. Public capital is provided by the goverment
through non distortionary taxation. Assuming the public sector objective to
be the maximization of per capita consumption in the long run, the model
solution displays two steady state levels of capital per effective worker. The
Pareto optimum steady state is stable, whereas the Pareto inferior one is
unstable. As a consequence, the model predicts both divergence for low lev-
els of initial private capital, and non monotonic conditional convergence for
levels of capital between the two steady states. The non monotonic con-
vergence result predicts that the transition towards the non trivial steady
state is characterized by increasing growth rates in per capita income (I-
convergence) up to the point where the traditional convergence behavior (II-
convergence) eventually brings the economy to the stationary equilibrium.
Therefore, the model enables a new interpretation of the significance level
of the β-convergence parameter estimated in MRW. In particular, findings
of β-divergence might be evidence of conditional I-convergence; whereas, not
statistically significant estimates of the speed of convergence might suggest
that the sample of countries lies between I-convergence and II-convergence.
Moreover, our model specification allows a new interpretation of tra-

ditional growth regressions, testing the ability of saving and populazione
growth to explain cross.country income differences, in terms of better figures
of the implied capital share.

12In this case MRW [20] find the following result for the restricted regression: α = 0.38
β = 0.23 λ = 0.0206.
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APPENDIX A: Approximation of the Unstable Private Capital
Steady State Solution
Let k

0
and k∗ be the real roots of k̇ = 0 with h = h∗. From the twin

conditions

sf(k
0
, h∗)− s(n+ δ + x)− (n+ δ + x)k

0
= 0

sf(k∗, h∗)− s(n+ δ + x)− (n+ δ + x)k∗ = 0

we get:

sh∗β

(n+ δ + x)
(k∗α − k0α) = (k∗ − k0) (A1)

[A1] cannot be directly solved for k0. Anyway, after repeated numerical
sulutions employing various sets of parameters values, we guess k

0
to be a

linear function of k∗

k
0
= θk∗ (A2)

Substituting [A2] into [A1], and considering the explicit values for h∗ and
k∗we obtain

g(θ) = θα − θ(1− β)− β = 0 (A3)

To obtain an approximation for the non trivial solution to [A3]13, we try
to apply the Newton method. Therefore, we need to set an initial value for θ
as the first step of iteration procedure. To this purpose, we try to guess the
solution for limiting values of α and β. In particular, we proceed deriving
(k

0
, k∗) in the following three cases: (i) β → 0, (ii) α → 0, (iii) β → 0 and

α→ 014.
Recall equation [8] and derive the k̇ = 0 condition in each case. Consider

first (i).

13It is easily cheked that θ = 1 represents the trivial solution to [A3].
14The remaining limiting case (α + β) → 1 is not relevant, because, depending on the

values of (n, s, x, δ), k∗and k
0
can be both zero or infinity.
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lim
β→0

sf(k, h∗)− s(n+ δ + x)h∗ − k(n+ δ + x) = skα − k(n+ δ + x) = 0

(A4)

[A4] has the two solutions:

k∗ = (
s

(n+ δ + x)
)

1
1−α

k
0
= 0

Considering case (ii), as α goes zero, sf(k, h∗) approaches to a constant
(sf(k, h∗) = [β/(n+ δ + x)]

β
1−β ), while h∗ tends to h∗ = [β/(n+ δ + x)]

1
1−β .

Then, the resulting steady state capital values are

k∗ = s(1− β)(
ββ

(n+ δ + x)
)

1
1−α

k
0
= 0

Finally, considering case (iii), as α and β go to zero, sf(k, h∗) approaches
to s , while h∗ tends to zero. Then, the resulting steady state capital values
are

k∗ =
s

(n+ δ + x)

k
0
= 0

Our next step is to guess a solution to [A3], with the requirement that
θ(α, β) = 0, for α and/or β approaching to zero. With the aid of numerical
computations we find that θ(α,β) = β

1
α satisfies the requirements.

Then, we consider θ = β
1
α as the first step of the Newton approximation

procedure:

step 0 : θ0 = β
1
α

step 1 : θ1 = θ0 − g(θ0)

g0(θ1)
=

αβ

αβ
α−1
α − (1− β)
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Given estimates of α and β lower than 0.4, the second step of the iteration
provides a good approximation for the true θ solution, so that θ1 can be used
to obtain an (approximated) algebric expression for k

0
.

APPENDIXB: The Determination of the Convergence-Divergence
Equation

Equation [18] implies that:

ln y(t) = (1− e−λt) ln y∗ + e−λt ln y(0) (B1)

where y(0) represents output per effective worker at some initial date.
Similarly, equation [9] implies that

ln y(t) = −(1− eλt) ln y0 + eλt ln y(0) (B2)

Subtracting ln y(0) from both sides and substituting for y∗ and y
0
we get

ln y(t)− ln y(0) = ai consti + aiy(0) + ai α

1− α− β
ln s− ai α+ β

1− α− β
ln(n+ δ + x)

(B4)

where i = 1 refers to the stable steady state y∗ and i = 2 to the unstable
steady state y

0
.Coefficients in [B3] take different values in the two cases:

const1 =
β lnβ + α ln(1− β)

1− α− β
< 0

a1 = (1− e−λt) > 0

const2 =

(
β lnβ + α ln(1− β)

1− α− β
+ α ln

"
αβ

αβ
α−1
α − (1− β)

#)
< 0

a2 = −(1− eλt) > 0
For estimation purpose it is useful toexpress the equations in terms of

variables per capita instead of per effective worker. Taking into accounts of
the condition A(t) = A(0)extin the left neighbour of y∗we get:
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ln

·
Y (t)

L(t)

¸
− ln

·
Y (0)

L(0)

¸
= xt− a1 lnA(0) + a1 const1 − a1 ln

·
Y (0)

L(0)

¸
+

+a1
α

1− α− β
ln s− a1 α+ β

1− α− β
ln(n+ δ + x)

and in the right neighbour of y
0
:

ln

·
Y (t)

L(t)

¸
− ln

·
Y (0)

L(0)

¸
= xt− a2 lnA(0) + a2 const2 + a2 ln

·
Y (0)

L(0)

¸
+

+a2
α

1− α− β
ln s− a2 α+ β

1− α− β
ln(n+ δ + x)

APPENDIX C : The Minimum Time Problem

Assume the following Minimum Time (MT) problem (switched to a max
problem):

max

TZ
0

−1 dt (C1)

subject to:

·
k = sf(k, h)− su− s(n+ δ + x)h− (n+ δ + x)k (C2)
·
h = u

and the following terminal conditions, with given initial values for k and
h:
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h(T ) = h∗ (C3)

k̇(T ) = 0

k(T ) = k∗

u(T ) = 0

T free

We set up the Hamiltonian:

H(t) = −λ0 + λ(t) [sf (k, h)− s(n+ δ + x)h− (n+ δ + x)k] + [µ(t)− sλ(t)]u
(C4)

where λ(t) and µ(t) are the multipliers associated to the law of motions
governing the evolution of k and h, and λ0 is the auxilary variable (which
can be either 0 or 1) associated to the maximand [C1].
The necessary conditions for an interior solution are:

∂H

∂k
= −λ̇ =⇒ λ̇+ λ(sfk − (n+ δ + x)) = 0 (C4.1)

∂H

∂h
= −µ̇ =⇒ µ̇+ sλ(fh − (n+ δ + x)) = 0 (C4.2)

∂H

∂u
= µ− sλ = 0 (C4.3)

where fk and fh indicate the partial derivatives of f(k, h) with respect to
k and h respectively. Furthermore, because the terminal date T is free, and
k and h are given in T , the following terminal condition must be met:

H(T ) = −λ0 + λ(T ) [sf (k∗, h∗)− s(n+ δ + x)h∗ − (n+ δ + x)k∗] +(C5)
+ [µ(T )− sλ(T )]u(T ) = 0

If condition [C4.3] cannot be satisfied, then the solution is ”bang-bang”,
that is the control u will be discontinuous. In particular:

µ− sλ > 0 =⇒ H is maximized setting u = umax (C4.4)

µ− sλ < 0 =⇒ H is maximized setting u = umin
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with umax and umin discretionary upper and lower limits exogenously set
by the goverment. We can now state several results, which can help to outline
the shape of the solution .
Result 1
The objective [C1] does not matter in the solution, i.e. λ0 must be zero
.

Proof. Consider condition [5]. Because u(T ) = 0, k(T ) = k∗ and h(T ) =
h∗, this implies that sf(k∗, h∗)− (n+ δ + x)k∗ − s(n+ δ + x)h∗ = k̇(T ) = 0.
Therefore, the transversality condition can only be satisfied if

λ0 = 0.
The hamiltonian [C4] then reformulates as follows:

H(t) = λ(t) [sf (k, h)− s(n+ δ + x)h− (n+ δ + x)k] + [µ(t)− sλ(t)]u
(C6)

Result 2
The Hamiltonian is constant and equal to zero for 0 ≤ t ≤ T .

Proof. The problem is autonomous. Therefore ∂H/∂t = 0. As H(T ) = 0
at the terminal date, this implies that H(t) = 0 for 0 ≤ t ≤ T .
These preliminary considerations leads to the following proposition:

Proposition 1 Any interior solution cannot be sustained over the time in-
terval [0, T ].

Proof. Any interior solution must be driven by condition [C4.3]. Substitut-
ing [C4.3] into conditions [C4.2] and [C4.1], obtains the following implication:

µ = sλ =⇒ sfk = fh (i)

condition [i] implies that the ratio k/h is constant:

k(t)

h(t)
=
sα

β
(ii)

As µ− sλ = 0, the H(t) = 0 condition implies that sf (k, h)− s(n+ δ +
x)h− (n+ δ + x)k = 0, or, equivalently, that:
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k̇ + sḣ = 0 (iii)

From (iii) follows that k̇ and ḣ must have opposit sign, which contradicts
condition [ii]
We now look for an admissible bang-bang solution. To this purpose, we

prove the following propositions:

Proposition 2 If umin < 0 (umax > 0) then no bang-bang solution exists

Proof. We first note that, if umin < 0, then from the H = λ
·
k + µ

·
h = 0

condition follows that k̇ > 0 and (λ, µ) must have the same sign. From [4.1]
we know that the sign of λ is enterely determined by λ(0). Suppose λ > 0
(the reverse reasoning apply if λ < 0). Then, when umax > 0 applies, k̇
must be negative. To see this, consider that µ − sλ > 0 → umax > 0, as a
consequence sf (k, h) − s(n + δ + x)h − (n + δ + x)k must be negative for
H = 0, which eventually implies that k̇ < 0.
Second, consider the behaviour of fh and sfk over the transition path:

sḟk = sfk

"
(α− 1) k̇

k
+ β

ḣ

h

#

ḟh = fh

"
α
k̇

k
+ (β − 1) ḣ

h

#
These preliminary considerations provide the following restrictions to the

bang-bang solution:
Rule A (umax): µ− sλ > 0 ; ḣ > 0 ; k̇ < 0 ; ḟh < 0 ; sḟk > 0
Rule B (umin): µ− sλ < 0 ; ḣ < 0 ; k̇ > 0 ; ḟh > 0 ; sḟk < 0
Furthermore, define z = µ− sλ. Then, from [C4.1[ and [C4.2[ we get the

following result:

sfk T fh ⇔ ż T 0

Given the above restrictions, we note that the A rule can lead to a switch
(B rule) only if sfk < fh.Now suppose the contrary. Then, as ḟh < 0 and
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sḟk > 0, it is ever verified ż > 0. Thus, the A rule can never reach a
switch if sfk > fh. It follows that, the A rule can be actually set only if
the B rule leads to a switch with

n
ḣ > 0, k̇ < 0

o
determining z > 0 and

sfk < fh. Now, as the B rule is characterized by z < 0, to reach a switch the
B rule

n
ḣ < 0, k̇ > 0

o
must be accompanied by ż > 0. But, this implies that

sfk > fh, so that in the switch point it will necessarily verified sfk ≥ fh, a
condition which starts up an explosive path, with ż > 0 forever, perpetually
diverging the economy from the fh(T ) > sfk(T ) terminal condition15.
Therefore, as the A rule can never be implemented, a bang-bang solution

with umin < 0 cannot exist.

Proposition 3 umin = 0 (umax > 0) cannot be a bang bang solution

Proof. Proof is immediate. Because ḣ = umin = 0, under the B rule the
hamiltonian reduces to

H(t) = λ(t) [sf (k, h)− s(n+ δ + x)h− (n+ δ + x)k]

which can be zero only if λ(t) = 0. This implies that λ(t) = 0 for any
0 ≤ t ≤ T . Consider now the opposite rule. If ḣ = umax > 0, from the

H = λ
·
k + µ

·
h = 0 condition follows that µ must be zero. Thus, the A rule

can never be set

Proposition 4 umin > 0 (umax > 0) cannot be a bang-bang solution

Proof. We show this, by proving first that the B rule can never lead
to a switch. From umin > 0, it follows that k̇ > 0. Then, from the H =

λ
·
k+µ

·
h = 0 condition follows that λ and µ must have opposite sign. Suppose

for simplicity that λ > 0 (µ < 0)We know that the B rule sets as µ−sλ < 0,
and a switch occurs when µ − sλ = 0. But, because µ < 0, while λ > 0, a
switch can occur only if µ turns positive. But with µ > 0 the B rule cannot
met the condition H = 0.
Now we complete the proof, by showing that the A rule can never lead

to a switch. The A rule is characterized by ḣ = umax > 0; this policy rule
can be associated to k̇ R 0. Let consider each possible case.
15In the steady state, with k(T ) = k∗ and h(T ) = h∗, sfk(T ) = α

1−β (n + δ + x), and
fh(T ) = (n+ δ + x). Given that (α+ β) < 1, it must be verified that fh(T ) > sfk(T ).
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(i)
³
ḣ = umax > 0, k̇ > 0

´
. With k̇ > 0 the A rule cannot be sustained,

because the H = λ
·
k + µ

·
h = 0 condition might be satisfied only if µ < 0,

which implies the B rule, as µ− sλ < 0.
(ii)

³
ḣ = umax > 0, k̇ = 0

´
.With k̇ = 0, the H = 0 condition can be

satisfied only if µ = 0, which again implies the B rule.
(iii)

³
ḣ = umax > 0, k̇ < 0

´
.By proposition 2 we already know that, with

ḣ > 0 and k̇ < 0 the A rule can never reach a switch
The above results summarizes into the following main proposition:

Proposition 5 The MT problem [1], subject to [2] has non solution.

Proof. Result [1] and propositions [1,2,3,4] show that the necessary con-
ditions for the existence of a control u(t) (and associated evolution of k)
optimal for the above MT problem do not exist ; i.e. do not exist a constant
λ0 and continuous functions λ(t) and µ(t) with {(λ0, λ(t), µ(t)) 6= (0, 0, 0)}
for all t ∈ [0, T ], such that H(u,k,λ, µ) ≥ H(u,k,λ, µ).
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