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Abstract

We propose (and test experimentally) a model of observational learning in which players

hold social preferences. To this aim, we design an experiment -based on a classic parlor

game known as the Chinos Game- in which we vary (by way of an exogenous iid stochastic

process) the probability of getting the prize in the event of a correct guess. By this design,

we are able to estimate more efficiently players’ sensitivity to difference in payoffs (and how

this sensitivity affects information decoding process along the sequence). We also condition

our estimates upon additional information on subjects’ socio-demographics, risk attitudes

and cognitive reflection by way of a questionnaire we collect at the end of each session.
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1 Introduction

There are many economic contexts -such as financial markets daily routine, or the choice
of firms on technological adoptions under uncertain market conditions- in which informa-
tion is obtained privately and transmitted sequentially. Economists are naturally inter-
ested in the effects of this sequentiality on (equilibrium) behavior, especially in the extent
with which sequentiality may impede the attainment of an efficient outcome in which all
information is correctly embodied in equilibrium. Theorists, most notably Banerjee [5]
and Bickchandani et al. [6], have shown that sequentiality of information transmission
may yield inefficiency, as players undervalue their private information, thus yielding what
have been labeled as informational cascades. Experimentalists, beginning with Anderson
and Holt [3] and Allsop and Hey [1], have confirmed empirically that such information
cascades do indeed occur in the lab.
The original theoretical literature we just mentioned posits a strategic environment

in which players receive a stochastic private signal about the “true” state of nature.
Then, in a fixed sequence exogenously given, they have to guess the true state of nature,
conditional on their private information and the observation of the guesses of all preceding
players. In this guessing game, players do not compete with each other, since they are all
rewarded with a fixed prize in case of a correct guess. In this respect, the literature has
always treated the above situation as the ideal setting to analyze information transmission
abstracting from strategic considerations (which are, instead, prominent, in sequential
environments of a different nature, such as signaling games).

Fig. 1. The Chinos Game (2-player version)

Along these lines, Feri et al. [13] design an experiment based on the classic parlor
game known as the Chinos’ Game. In this game, players start by hiding in their hands
a certain number of marbles. Then, in some pre-specified order, each player has to guess
the total number of marbles in the hands of every player. When doing so, a player is
informed of her own number and the guesses produced by all others who preceded her.
Figure 1 reports a 2-player version of the Chinos Game, when the maximum number

of marbles in the hands of each player is 1. While in the original game this number is
chosen by each player, Figure 1 (by analogy with our experimental protocol) simplifies
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matters, leaving this decision in the hands of Nature, where the (iid) probability of
holding a marble is commonly known to be p > 1

2
.

In the game of Figure 1, all players who guess correctly win a fixed prize. Thus, the
game has clear analogies with the models of positional learning we just referred to.1 In
this respect, Feri et al.’s [13] find systematic deviations from profit maximizing behavior,
which they rationalize with a simple model of error cascades, by which the higher the
probability of a deviation from optimal behavior (i.e. an error) on behalf of first movers,
the higher the probability of a mistake in late-movers’ behavior.
Figure 2 provides a robustness check of Feri et al.’s [13] conjecture using our own ex-

perimental evidence. Figure 2 tracks, for each player position and experimental matching
group, the evolution across rounds of the relative frequency of times in which subjects
choose their profit maximizing guess, assuming that players’ beliefs (i.e., a system of
probabilities of a positive signal conditional on predecessors’ guesses) are obtained by
“counting” the number of time a given signal was associated with a given guess in the
past (details in the Appendix).

Fig. 2. Error cascades I: relative frequencies of best responses

It may be worthwhile to notice that, by maximizing their winning probability, players
perfectly reveal their private signal to later movers (see (1) below). In this respect,
Figure 2 shows that player 1’s learning path seems to crucially affect the likelihood of
the other group members to select their payoff maximizing action. In other words, the
extent to which Player 1 delivers a “clean” message of her private information seems to
crucially affect the likelihood of her successors to maximize profits. In Feri et al.’s [13],
this behavioral anomaly is framed in the context of McKelvey and Palfrey’s [21] Quantal
Response Equilibrium. This approach postulates that a) players behave optimally subject
to an error (with full support) and b) the probability of playing suboptimally is decreasing
the payoff loss. Again, their analysis still maintains that players do not have strategic
motives, in that they aim to maximize the probability of winning the prize (and, by doing
so, they should perfectly reveal -up to an error- their private signal).

1See also [8], [9].
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Assume, instead, that players are also moved by relative comparisons. This is very
reasonable to assume in the context of positional learning, where first-movers play with
a clear information handicap, and by playing “optimally” give later movers a better
chance to win. To see why, look at Figure 1 and consider the situation of Anna whose
highest expected payoff -which is attained by adding 1 (given p > 1

2
) to her signal, see

(1) below- is equal to p. However, by doing so, she perfectly reveals her signal to Beppe,
giving him the chance to win the prize for sure. If Anna were moved by envy -due to her
disadvantageous position in the sequence- she may be willing to shade (at least, partially)
her signal, with the aim of reducing Beppe’s probability of winning, even if this implies
a reduction of her own winning probability, too.
The aim of this paper is to look at the Chinos Game -here to be interpreted as a

stereotypical example of positional learning environment- allowing for the possibility that
subjects (although not necessarily all of them) deviate from profit maximizing behavior
moved by distributional concerns. In this respect, this paper sits squarely in the growing
experimental literature which shows that, in a wide variety of situations, people exhibit
social (i.e. interdependent) preferences.2 This novel theoretical spin in the analysis of
positional learning motivates an experimental design in which we modify the original
protocol by introducing an endogenous random shock which reduces the probability of
getting the prize in the event of a correct guess of only one player in the sequence (we
call her the Selected Player, SP), whose identity changes from one round to the next. By
this design, we are able to estimate more efficiently subjects’ distributional concerns (and
how these concerns affect information decoding along the sequence). We also condition
our estimates on additional information on subjects’ demographics, risk attitudes and
cognitive reflection we collect by way of a questionnaire.
The remainder of this paper is arranged as follows. In Section 2 we review the relevant

literature. Theory is what we develop next, by setting up a formal account of the experi-
mental environment (Section 3.1), together with the development of a simple theoretical
model (Section 3.2) in which we show that, when relative comparisons affect players’
preferences, information shading may be justified as rational (equilibrium) response.
This theoretical conjecture is then brought to its empirical validation by way the

design of a specific modification of the Chinos Game, whose experimental conditions
are described in detail in Section 4. Section 5 summarizes our experimental findings.
Here we see that subjects’ average behavior is better approximated (and best, for some
of our experimental groups) by a structural model which encompasses -together with
noise, unavoidable in the analysis of any experimental environment- the existence of
distributional motives. We also see that subjects’ socio-demographics are capable of
explaining a significant amount of between-subject heterogeneity. Specifically, we find that
a) less risk averse and more cognitive responsive subjects show greater ability to pursue
their individual objectives in the game, while b) women exhibit more altruistic behavior
than men, in that are less inclined to deviate from full revelation to rational shading.
Section 6 concludes, followed by an Appendix containing a more detailed account of Feri
et al.’s [13] model of error cascades, additional statistical evidence, the experimental
instructions and the questionnaire.

2This experimental evidence is well summarized in the excellent surveys of Fehr-Schmidt [12] and
Sobel [22].
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2 Literature survey

In this section we review two strands of literature we consider relevant to our project.
Section 2.1 reports some experimental evidence on signaling games. As we mention in
the introduction, once we introduce social preferences, we give players a rational motive
to lie about their signal while, in the standard treatment of positional learning, they have
not. The second strand refers to the role of incentive effects in the lab. This is relevant to
our purpose, since our only modification to the original Chinos game protocol is exactly
to introduce an exogenous shock by which the expected payoff of one player in the group
is arbitrarily reduced. While the literature we survey is only focused in the analysis of
direct incentive effects, we are also interested in indirect effects, i.e. the loss of trust on
the other players’ behalf, of the SP’s message.

2.1 Deception in Signaling Games

The experimental literature on signaling games mainly deals with the so-called Sender-
Receiver Game-form, by which one player (the Sender) sends a message about her type
(which she is the only one who knows), while the other player (the Receiver), once he has
received the message, has to choose an action. Players’ monetary payoffs only depends
on the Sender’s type and the Receiver’s action. The main finding of this literature
is that deception (i.e. senders lying about their types) is often used but, contrary to
equilibrium prediction, it is often believed. This is how Sopher and Zapater [23] explain
this behavioral anomaly: “In a game with two types, even if the players know that type 1
will always send the message ‘I am type 1,’ they act as if they failed to understand that
any other message must come from type 2” (p. 5).
Forsythe et al. [15] frame the signaling game as a market for product quality. Sellers

know the quality of their good (their type); buyers know only the distribution of qualities.
In their cheap talk treatment, at no cost, sellers can announce a range of qualities,
which (they claim) includes the quality of their good. Buyers then decide whether or
not to buy and at what price. Thus, in this treatment of the experiment, sellers can
deceive buyers about their good’s quality, and many do (186 fraudulent claims out of a
total 660). Equilibrium analysis predicts that buyers will not be deceived, but in the
experiment they are. In another antifraud condition, sellers are constrained to include
their product’s true quality in the quality range they quote to buyers. Here, deception
is ruled out, yet buyers still sometimes overpay for the good as “buyers are not always
sufficiently skeptical of their [seller’s] statements”. In particular, the authors conclude
that “Buyers are frequently taken in by the seller’s overoptimistic statements and bid too
much for the asset”.3 Finally, Gneezy [17] interprets the evidence of Sender-Receiver
games by appealing to social preferences. He argues that subjects care not only about
how much they gain from lying, but also how much the other side loses. While subjects
are mostly sensitive to their gain when deciding to lie, this unselfish motive diminishes
as the induced payoff difference grows.

3See also Sopher and Zapater [23].
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2.2 Incentive effects in experiments

Broadly speaking, we can say that economists generally assume that experimental sub-
jects work harder, more persistently, and more effectively if they can earn more money
for better performance. By, contrast, psychologists generally believe that intrinsic moti-
vation may produce focussed effort even in the absence of financial rewards. Hence, for
economists higher payoffs lead to higher performance, while for psychologists what mat-
ters is intrinsic motivation. There is a vast literature on this topic and we report here a
subset of this literature that we consider most relevant to this paper. Camerer and Hoga-
rth [7] review 74 experiments with “no”, “low” or “high” financial incentives. They found
that the modal result is that there is no effect on mean performance, though the variance
reduces in the presence of higher incentives. Along similar lines, Gneezy and Rustichini
[18] find that the effect of monetary compensation on performance is not monotonic: in a
treatment where monetary compensation was offered, higher compensation generally led
to higher performance. However, offering money does not always produce an improve-
ment: subjects who were offered low monetary rewards produced lower performance than
subjects who were not offered any monetary compensation. Their main finding is that
performance varies in a non-monotonic way with incentives.
Ariely et al. [4] run experiments where there are different types of tasks; some tasks

concentrate on motor skills, some on memory and some on creativity. The highest level
of monetary reward produces a lower performance in all tasks of the first experiment;
in the second experiment, where the task involves only physical effort, they find lower
performance (for higher incentives) in motor skill and creativity, as the psychological
literature predicts.
Finally, incentive effects have also been investigated in the context of positional learn-

ing. Anderson [2] considers a “no payoff” treatment (where participant are paid a fix
amount), against “payoff” and “double payoff” treatments where, instead, monetary re-
wards depend on subjects’ decisions. In this respect, she finds that rewarding the correct
decision reduces the amount of the decision error, but increasing the payment for a correct
decision does not reduce the error over the range of payoffs considered.

3 Theory

This Section is also divided in two parts. In Section 3.1 we describe and solve the Chi-
nos Game, characterizing the unique guess sequence compatible with a Perfect Bayesian
Equilibrium (PBE hereafter) of the game. The analysis here is made under the behav-
ioral assumption -business as usual in the related literature- that players only aim to
maximize their winning probability. In Section 3.2 we introduce distributional concerns
in a simplified version of the game, which allows us to convey the main message of our
theoretical conjecture: payoff comparisons across players may yield rational (equilibrium)
shading.
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3.1 The Chinos’ Game

In Feri et al.’s [13] experimental Chinos Game, three players, indexed by i ∈ N = {1, .., 3}
privately receive a signal si (either 0 or 1) identically and independently drawn from a
fixed probability distribution, with p > 1

2
denoting the probability of si = 1 (p =

3
4
in the

experiment). Players act in sequence and have to guess the sum of signals, ψ ≡ s1+s2+s3.
By the time Player i makes her guess gi ∈ G ≡ {0, ..., 3}, she knows her signal (si) and
the guesses of those who acted before her in the sequence {g1, ..., gi−1}. In this case, the
sum of signals for k players follows a Binomial distribution Bin(k, p). Let Mk be the
mode of such a distribution. While in Feri et al.’s [13] all players who guess correctly
(i.e. gi = ψ) receive a fixed prize, our only modification of the original protocol consists
in

1. introducing a uniform random draw which selects, at each round, one player in the
sequence (the SP, indexed by k), with

2. the SP, conditional on guessing right, winning the prize with probability αk < 1,
while the other group members’ situation remaining unchanged (i.e. α−k = 1).

In each round, both the identity of the SP k, together with her current winning
probability αk are communicated to all group members who may condition their guess
to this information.
Let Hi denote the set of player i

0s information sets with generic element h, with
H1 ≡ {h = s1}, H2 ≡ {h = (g1, s2)} and H3 ≡ {h = (g1, g2, s3)}.
Strategies and beliefs are conventionally defined. A behavioral strategy for Player i

is a mapping γi : Hi → G, with γhi (gi) is the probability of guessing gi at information set
h. By the same token, a system of beliefs is defined as µi = { µhi ∈ ∆(h)}, with µ ≡ (µi)
If we assume that players aim to maximize their winning probability -as it is common

in the literature on positional learning- given the realized vector of signals s ≡ (s1, s2, s3),
there exists a unique equilibrium path, common to all the PBE of the game:

ḡ1(s1) = s1 +M2,

ḡ2(g1, s2) = (g1 −M2) + s2 +M1, (1)

ḡ3(g2, s3) = (g2 −M1) + s3.

To see this, remember that, since p is common knowledge, also M1 and M2 are
common knowledge. Thus player 2 and Player 3 can infer s1 from g1 (i.e., s1 = g1 −M2) .
By the same token, Player 3 can infer s2 from g2 since g2 −M1 = s1 + s2. Therefore,
in equilibrium, each player perfectly reveals her signal and takes expectations (by way
of Mi) over the sum of signals of her successors in the sequence. This is equivalent to
say that the higher the player position, the higher her chances to win the prize (i.e.
Pr(s2 + s3 = M2) = p2 < Pr(s3 = M1) = p < 1). Moreover, by (1), Player 3 needs not
look at Player 1’s guess to evaluate her optimal behavior, since all relevant information
regarding s2 and s1 are contained in g2. Since our experimental conditions imply p =

3
4
,

the corresponding PBE path can be derived by substituting M1 = 1 and M2 = 2 in
the expressions above. Notice that this result is not affected by the introduction of our
exogenous random shock.
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3.2 Signaling in the Chinos Game

In this Section, we provide some formal dress to our working hypothesis: positional learn-
ing gives rise to rational shading if players have distributional preferences. To show, we
further simply matters and consider a toy example in which there is uncertainty only on
Player 1’s signal (i.e. it is as if we were assuming that Player 2’s probability of winning
only depends on her ability to properly decode Player 1’s guess, g1). In case of a cor-
rect guess, Player 1’s prize is smaller, this indicating the feature of the Chinos game by
which, in equilibrium, Player 1’s probability of winning is smaller than Player 2’s. Figure
3 draws the game-form associated to the strategic situation we just outlined.

Fig. 3. A simplified version of the Chinos Game of Fig. 1

Let σk1 = γk1 (1) (σ
k
2 = γh2 (1)) denote the probability with which Player 1 (2) delivers

the guess g1 = 1 (g2 = 1), after observing Nature’s move s1 = k (Player 1’s guess g1 = k).
Let also µk = Pr [s1 = 1 |g1 = k ] be Player 2’s conditional probability of a positive signal
given g1, evaluated using Bayes’ rule (wherever possible).
Let also πhj (σ |µ) player j’s expected monetary payoff evaluated at h, conditional on

a given behavioral strategy profile σ ≡ (σ1, σ2) , with σi ≡ (σ0i , σ1i ), and belief system,
µ. Since player 2 has no chance of affecting Player 1’s probability of winning with her
decision, we shall simply assume that Player 2’s payoff in the game is perfectly aligned
with her expected monetary prize, i.e. uh2(·) = πh2 (·). By contrast, as for Player 1’s payoff,
we consider the following
Assumption 1

uh1(σ) = (1 + θ1)π
h
1 (·)− θ1π

h
2 (·), θ1 > −1. (2)

By (2), Player 1’s preferences do not only depend upon her own probability of suc-
cess, but also on the difference πh2 (σ) − πh1 (σ), where θ1 > 0 (θ1 < 0) indicates spiteful
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(altruistic) preferences.4 We are interested in characterizing the set of PBE of the game
of Figure 3, as a function of the distributional preference parameter, θ1.

5

Proposition 1

1. If θ1 <
p
1−p , the game has a unique (truthfully revealing) separating PBE in which

σ11 = 1− σ01 = 1.

2. If θ1 =
p
1−p , the game has

(a) an hybrid PBE in which σ11 = 1, σ
0
1 <

1−p
p
,, σ02 = 0 and σ12 = 1. and

(b) another hybrid PBE in which σ01 = 0, σ
1
1 > 2− 1

p
, σ02 = 0 and σ12 = 1

3. If θ1 > p
1−p , the game has a pooling PBE in which σ01 = σ11 = 1, µ0 = 1

2
and

σ02 ∈
h
θ1(1− p)− p, θ1(1−p)

θ1(1−p)+θ1p2
i
.

Proof.

1. Full revelation implies σ2 = (0, 1), which in turn implies u1(σ) = (1 + θ1)p− θ1 >
0⇐⇒ θ1 >

p
1−p .

2a. σ12 = 1 only if µ
1 =

pσ11
pσ11+(1−p)σ01

> 1
2
, which, in turn, implies σ01 <

1−p
p
. Since σ1 =

(0,1), µ0 = 0, which, in turn, implies σ02 = 0. If σ2 = (0, 1), given θ1 =
p
1−p ,

u1(σ1, σ2) = 0, for all σ1.

2b This case is symmetric to 2a. If σ01 = 0, then µ1 = 1 (i.e. σ12 = 1). This, in turn,
implies a lower bound on σ11 to make σ

0
2 = 0.

3 If σ1 = (1, 1), then µ1 = p and µ0 is not defined. This implies that σ12 = 1. Since
θ1 >

p
1−p , a PBE exists iff µ0 = 1

2
and the following conditions hold:

(1− σ02)(p− θ1(1− p) + σ02(p(1 + θ1) < 0;

−θ1σ02 < p− θ1(1− p).

Proposition 1 depicts different equilibrium configurations, depending on Player 1’s
degree of “spitefulness”, θ1. When θ1 is sufficiently low (or even negative, indicating
altruism), the unique PBE implies full revelation, in that it maximizes Player 1’s (and
hence, Player 2’s) probability of winning. As θ1 grows, shading becomes prominent,
up to the extreme situation in which 1 always deliver the most likely guess, g1 = 1,

4Notice that, given distributional concerns, player 1’s payoffs also depends upon player 2’s beliefs,
since 1 has to form expectations over 2’s response, since from the latter depends player 2’s expected
monetary payoff which, by (2), affects player 1’s evaluations, too. In this Section, as well as in our
estimation excercise, our manipulation of beliefs as derived by the observation of public guesses avoids
of the complication of modeling higher order beliefs (see the Appendix for the details).

5This corresponds to the classic Fehr and Schmidt’s [11] model of social preferences when distribu-
tional concerns are evaluated by a single parameter.
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independently on private information. This is because, in this case, the “equitative
outcome” in which both players fail (i.e. they both get 0) is sufficiently high in Player
1’s ranking, compared with situations in which 1 gets the prize (but Player 2 gets the
higher prize, too). Finally, notice that, no matter how high is θ1, a PBE in which 1 pools
at g1 = 0 cannot exist. Last, but not least, as usually happens in signaling games, the
game admits pooling equilibria, but not fooling equilibria, in which player 1 consistently
deliver the wrong message. This partially contradicts the evidence of Section 5.
Proposition 1 covers our experimental Chinos Game, once we extend the model to

encompass for 3 players and for a wider variety of guesses. In addition, our utility
specification (2) leads naturally to the following:

uh1(·) = (1 + θ21 + θ31)α1π
h
1 (·)− θ1α2π

h
2 (·)− θ31α3π

h
3 (·); θk1 > −1, k = 2, 3; (3)

uh2(·) = (1 + θ32)α2π
h
2 (·)− θ32α3π

h
3 (·), θ32 > −1; (4)

uh3(·) = α3π
h
3 (·). (5)

4 Experimental design

In what follows, we describe the features of the experiment in detail.

1. Sessions. The experiment was conducted in 2 sessions at the Laboratory of The-
oretical and Experimental Economics (LaTEx) of the Universidad de Alicante. A
total of 48 students (24 per session) was recruited among the undergraduate pop-
ulation of the Universidad de Alicante. The 2 experimental sessions were run in
a computer lab. Instructions were read aloud and we let subjects ask about any
doubt they may have had.6

2. Matching. Subjects played anonymously in groups of 3 players for 24 rounds, always
with the same opponents, always in the same player position (the latter condition
being specific of our design, compared with related papers, such as Anderson and
Holt [3], or Alsopp and Hey [1]). Both these features were publicly announced and
specifically designed to ease information decoding, letting subjects to tailor their
subjective beliefs on their specific player position and on the individual behavior
of their own group members. By this design, we were able to collect 16 indepen-
dent observations of our experimental environment, that is, a comparatively higher
number of observations (8x2=16 for 2 sessions of 24 subjects each), compared with
related experimental works (4 in [1], 12 in [3]).

3. Random events. At each round each player’s signal si was the outcome of an iid
random draw, with p = 3

4
. As we already anticipated, the primary modification of

Feri et al.’s [13] experimental protocol was to target a player in the sequence with
a negative shock by which, in case of a correct guess, she would enjoy the prize only
with probability αk (instead of 1). Within each round t = 1, ..., 24, the identity of
the SP, k, together with the probability of winning the prize if guessing right, αk,

6The experiment was programmed and conducted with the software z-Tree (Fischbacher [14]). A
copy of the experimental instructions, translated into English, can be found in the Appendix.
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was randomly determined. Let time interval Tτ = {t : 3(τ − 1) < t ≤ 3τ}, τ =
1, ..., 8, be the subsequence of the τ−th 8 rounds. Within each time interval Tτ ,
each player was selected once, in a random order, common to all groups. This was
to synchronize the panel. On the other hand, all other random events (i.e. the
realization of αk ∼ U [0, 1] and its actual draw, was iid.

4. Payoffs. All monetary payoffs in the experiment were expressed in Spanish Pesetas
(1 euro is approx. 166 ptas.).7 All subjects received 1000 ptas. (1 euro is approxi-
mately 166 ptas.) just to show up. The fixed prize for each round was equal to 100
ptas. Subjects received, on average, 18 euros for a 45-minute experimental session.

5. Ex-post information. After each round, all subjects were informed on all payoff
relevant information, that is, the correct guess (and, therefore, their individual
payoff) and guesses and signals of all subjects in their group. In addition, the
experimental software provided subjects with an History Table, to better track the
sequence of signals and guesses of all their group members in all previous rounds.

4.1 The Questionnaire

We here briefly summarize the structure of the questionnaire administered to all subjects
at the end of the experiment.8

1. Demographics. The first section of the questionnaire collects information about
our subjects’ demographics and academic background. In this section we find
questions about age, gender (GEN=1 for female), weekly budget (WB, in euro),
and family’s wealth (RoomSizeRatio, RSR, obtained dividing the family size
with the number of rooms of the main residence).

2. Risk attitudes: Holt and Laury’s [20] test. For all 9 questions, subjects have to
identify their preference between two binary lotteries, one of which (Option 1) is
characterized by a smaller difference in monetary payoffs (i.e. a smaller variance).
The 9 lotteries only differ with respect of the probabilities associated to of the high
prize within each lottery: the higher the probability of the high prize, the higher
the difference (in favor of the riskier Option 2) in expected payoffs. Following Holt
and Laury, we proxy each subject’s attitude to risk by the relative frequency of the
risky option across all 9 questions (i.e. HL∈ [0, 1] , increasing with risk loving).

3. Cognitive Reflection Test (CRT, Frederick [16]). The CRT is compound of three
simple questions, which are easy in that their solution and easily understood when
explained, but to arrive at the right answer candidates need to suppress the first

7It is standard practice, for all experiments run in Alicante, to use Spanish ptas. as experimental
currency. The reason for this design choice is twofold. First, it mitigates integer problems, compared
with other currencies (USD or Euros, for example). On the other hand, although Spanish pesetas are
no longer in use (substituted by the Euro in the year 2000), Spanish people still use Pesetas to express
monetary values in their everyday life. In this respect, by using a ”real” (as a opposed to an artificial)
currency, we avoid the problem of framing the incentive structure of the experiment using a scale (e.g.
”Experimental Currency”) with no cognitive content.

8A copy of the questionnaire, translated into English, can be found in the Appendix.
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response that springs ‘impulsively’ to their mind and instead work it out logically.
Thus, beyond the basic mathematical skills necessary to answer the three questions,
the test is meant measure the ability to overcome impulsive answers. It is also
a good indicator of how patient subjects are and how good they are at making
decisions. The test yields an index, CRT∈ [0, 1] , reporting the relative frequency
of correct answers (i.e. higher CRT indicates higher cognitive reflection).

5 Results

In presenting our experimental results, Section 5.1 first describes our subject pool, us-
ing the information derived from the questionnaire. We then provide some descriptive
statistics in Section 5.2. Since our model is built upon distributional concerns, and
the sequential structure of the game does not admit to affect the predecessors’ winning
probabilities, Section 5.2 only reports on Player 1 and Player 2’s aggregate and individ-
ual behavior. We then estimate in Section 5.3 our structural model (3-4), to test our
theoretical conjectures.

5.1 Questionnaire

1. Demographics. The questionnaire was completed by all 48 students participating
to the experiment. They are aged 18 to 26 (mean 20.04, st. dev. 2.28), 31% of them
female. Some two-third of our participants state they are full-time students (i.e.
they do not work, even temporally or part time), and most subjects (just above
90%) report that their parents are the main source of income for their family.
Average number of people living in the household is 4 (sd .96), while their average
weekly budget is 54 euros (sd 72). As for their Academic background, 15% of
subjects comes from Economics, 52% from Business Administration, 7.2% from
other Social Sciences rather than Economics or Business, while 8% follows Science
Degrees.

2. Risk attitudes and personal traits. Table 1 reports the correlation coefficients
between our questionnaire socio-demographics.

GEN RSR WB HL CRT
GEN 1
RSR .14 1
WB -.16 -.13 1
HL -.1 .18 .12 1

CRT -.4∗∗∗ .13 .16 -.05 1

Table 1: Correlations between socio-demographics. Standard errors between brackets. ***=1
% significant; **=5 % significant; *=10 % significant.

As Table 1 shows, all correlations but one are not statistically significant, this indi-
cating that our questionnaire explores complementary dimensions of our subjects’ het-
erogeneity. The only noticeable exception is the (negative) correlation between GEN and
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CRT, indicating a significantly lower cognitive reflection -at least, that proxied by Fred-
erick’s [16] test- on female’s behalf. This is actually in line with the related literature.9

5.2 Descriptive statistics

Table 2 shows the relative frequency with which players’ guess coincides with the sum of
signals. Table 2 also reports (within brackets) the corresponding theoretical prediction
under the assumption that players only aim to maximize their winning probability. Notice
that winning frequencies increase with player position, although at a “slower pace” than
the profit maximizing benchmark.

Player Frequency of guessing right
1 .43 (.56)
2 .55 (.75)
3 .59 (1)

Table 2: Winning distributions

Table 3 summarizes Player 1’s aggregate behavior. In Table 3a) we report behavioral
strategies (i.e. guesses conditional to signals), with regular (bold) type indicating absolute
(relative) frequencies. In Table 3b) relative frequencies are calculated conditional on
Player 1’s guess (instead of Player 1’s signal).

g1 0 1 2 3
s2 = 0 4 19 57 8
% .04 .22 .65 .09

s2 = 1 8 26 110 152
% .03 .12 .43 .42

g1 0 1 2 3
s2 = 0 4 19 57 8
% .33 .32 .44 .05

s2 = 1 8 26 110 152
% .67 .68 .56 .95

a) b)

Table 3: Player 1’s aggregate behavior

From Table 3a) we first observe that the profit maximizing guess -see (1)- corresponds
to the modal choice when s1 = 0, but not when s1 = 1 where -basically, Player 1
mixes between g1 =2 and g2 =3 with equal probability. In this respect, average play
configuration is reminiscent -up to some noise- of the hybrid PBE 2b, in that Player 1
mixes conditional on the high signal only. Consistently with 2b, if belief formation did
follow relative frequencies of use -which is our case, see (11) in the Appendix- Player 2,
after observing g1 < 3, should assign to the event s1 = 1 a posterior probability greater
that 1

2
. In Table A1 (in the Appendix) we summarize Player 2’s aggregate behavior. Here

again, willingness to reveal greatly differ across information sets, as we observe a rather
different behavioral pattern, depending on player 1’s message, g1. When g1 = 3, player
2’s perfectly reveals her signal at least 80% of the times, while, conditional on g1 = 2,

9See Frederick [16], p. 37.
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player 2 mixes with equal probability between g2 = 1 and g2 = 2 (g2 = 2 and g2 = 3)
depending on whether s2 = 0 (s2 = 1).

10

This evidence, obtained aggregating subjects’ behavior observations across matching
groups, hides a high heterogeneity in behavior. This is why, in Table A1 (in the Ap-
pendix) we report Player 1’s behavioral strategies disaggregated across our 16 matching
groups (G1 to G16). As Table A1 shows, the various matching groups display great
heterogeneity in their conformity with maximization of winning probability, with

i) full conformity obtained only in 2 cases (G13 and G16);

ii) “almost” full conformity (i.e. less than 10% of deviations) in 2 cases (G2 and
G11);

iii) “moderate” conformity (10% to 30% of deviations) in other 2 cases (G9 and G12);

iv) pooling “2b type” behavior in 3 cases ((G3, G5 and G10);

v) “noisy” behavior (i.e. behavioral patterns which do not follow any of the equilib-
rium profiles listed in Proposition 1), for all other cases, up to the extreme case of
G4, which plays a completely mixed behavioral strategy in which about 1

2
of the

times guesses 1 or less.

Player 1 between-subject heterogeneity creates, in turn, great heterogeneity in the
entire development of group behavior (as Figure 2 clearly shows). In the next Section,
we shall apply our model of distributional preferences to check whether deviation from
profit maximizing behavior is consistent with spiteful preferences (and how the latter are
sensitive to subjects’ socio-demographics).

5.3 Estimating social preferences

We are now in the position to estimate, both at the aggregate level and for each experi-
mental matching group, a behavioral model in which at each point in time t = 1, ..., 24,
(common) players’ beliefs µht are evaluated by (11). Following (3-5), v

l
it is the value

associated to option l = 0, ..., 4 by player i, with

vlit = uhi (e
l
¯̄̄
µht ) + εlit, (6)

where el =
h
el(j)

i
, with el(j) = 0 if j 6= l and el(l) = 1, and εlit is independently and

normally distributed, with mean 0 and constant variance (to be estimated together with
the other parameters of the model). By (6), subject i guesses l at round t if

l ∈ argmax
hn
v0it, . . . , v

3
it

oi
.

Under our assumptions on stochastic term εlit, the probability that individual i guesses l
at round t follows a logistic distribution,

Pr (gi = l) =
exp

h
λiv

l
it

i
3P

j=0
exp

h
λiv

j
it

i , (7)

10Observations for which which g1 < 2 are too few and disperse to draw meaningful conclusions.
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where λi measures subject i’s precision in maximizing her objective function.
11 We aug-

ment our behavioral model to include a precision parameter to keep track more efficiently
the information transmission along the sequence.
According with (7), our estimation strategy consists in a two-step procedure by which:

1. in the first step we estimate subjects’ beliefs µt using (11), while

2. in the second step we estimate -via partial maximum likelihood- the distributional
parameter profile θi and the precision parameter λi which better suits subjects’
behavior.

Table 4 reports the pool estimation of (7). The reported estimated standard errors
in Table 4 take into account matching group clustering.

Coeff. Std. err. p− value 95% conf. int.
λ1 5.32 .9 0 3.54 7.1
λ2 4.66 .53 9 3.62 5.7
λ3 1.33 .24 0 .84 1.82

θ21 .37 .11 .01 .15 .59
θ31 .025 .11 .8 -.17 .22
θ32 .53 .24 .03 .06 1

Table 4: Pool estimates of ()

As Table 4 shows, the estimates of λi detect a decay in players’ accuracy along the
sequence (where the loss in accuracy is particularly noticeable between Player 2 and
Player 3). Also the estimates of θji exhibit a decay in distributional concerns: they are all
positive (this indicating the predominance of spiteful motives), but are only significant
when they refer to player i’s immediate successor. In Table A3 (in the Appendix) we
report the estimations of the individual λi and θji for all our 16 matching groups, G1 to
G16. Here we find that, at the level of the individual estimation of player 1’s parameters,
our model nicely adapts to the taxonomy we produced in the previous paragraph (take,
for instance, the extreme cases of G3, G4, G5, G10, G13 and G16).
In Table 5 we control our between-subject heterogeneity by conditioning the pool

estimates of (7) upon treatment conditions (αk) and our questionnaire variables (see
Section 4.1).12

In Table 5, our accuracy parameters λi are regressed against socio-demographics and
treatment conditions, as follows:

λi =
X
j≤i

βjiαj + βGENGEN+ βRSRRSR+ βWBWB+ βHLHL+ βCRTCRT. (8)

In (8), αj, j ≤ i, are used as regressors. As Table 5 shows, we expect (and find)
βji > 0. As for βii , a positive coefficient indicates that players’ accuracy in optimizing

11See, for example, Stahl and Wilson [24].
12Also in Table 5 the reported estimated standard errors take into account group clustering.
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λ1 λ2 λ3 θ21 θ31 θ32
α1 8.1 (3.7)** 4.01 (1.16)*** .45 (.44) - - -
α2 - 1.69 (.33)*** .62 (.26)** - - -
α3 - - 1.63 (.62)** - - -
∆α21 - - - .3 (.1)*** - -
∆α31 - - - - .17 (.1)* -
∆α32 - - - - - .4 (.1)***

GEN .1 (2.5) -.6 (1.3) .33 (.69) -.5 (.2)*** -.17 (.1)* -.49 (.3)*

RSR 6.3 (1.3)*** 2.05 (1.8) -.05 (.04) .01 (.19) .11 (.09) .49 (.3)*

WB -.01 (.03) -.014 (.4) .058 (.05) .01 (.01) .01 (.01) -.01 (.01)

HL 5.82 (2.94)** 4.01 (1.1)*** 5.45 (2.9)* -.02 (.33) -.16 (.3) -.44 (.77)

CRT 21 (5.25)*** 12.3 (6)*** 9.48 (3.7)*** -.26 (.32) -.08 (.22) .19 (.22)

Table 5: Estimates of λi and αi conditional on socio-demographics. Standard errors between
brackets. ***=1 % significant; **=5 % significant; *=10 % significant.

their objective function grows with the probability of winning the prize in case of a
correct guess (we called it a direct effect of αi on λi).This conjecture is in line with many
models of bounded rationality, such as McKelvey and Palfrey’s [21] Quantal Response
Equilibrium), by which the probability of a suboptimal action is decreasing the expected
payoff loss. A positive and significant βii is also perfectly compatible with Feri et al.’s
([13]) model of error cascades. On the other hand, we also expect (and find) βji>0, with
j < i. This is due to the reduced trust player i holds on j’s message, whenever the latter,
given k = j (i.e. j is the SP), is -correctly, given our estimates- expected to be noisier
than usual (we called this an indirect effect). By analogy with our findings in Table 4,
we see that also this effect is fading with the distance between player in the sequence
(take the case of β13 , which is still positive, but not significant). As for the effects of
socio-demographics, we find that both CRT and (somewhat more surprisingly) HL have
a positive impact on subjects’ accuracy.
As for the distributional parameters, θji , j > i, we opted for the following specification:

θji = γji∆αj
i + γGENGEN+ γRSRRSR+ γWBWB+ γHLHL+ γCRTCRT, (9)

with ∆αj
i = αj−αi. In this case, we expect (and find) γj > 0, indicating an increasing

spitefulness in the difference in winning probabilities. Again, also this effect fades with
the distance between players in the sequence. As for socio-demographics, GEN seems to
capture the only significant factor, with women, on average, more altruistic than men.

6 Conclusion

This paper provides an alternative -although complementary- explanation to deviation
from profit maximizing behavior in the context of positional learning. According to the
simple model we develop in Section 3.2, subjects may be willing to consciously reduce
their winning probability, if this reduces their comparative disadvantage, in a situation
-such as positional learning- where the latter is not due to others’ behavior, but simply
to the exogenous structure of information transmission (and, in this sense, is not likely to
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yield reciprocal behavior). Our experimental evidence shows that our additional explana-
tion seems to work better for some experimental groups than others, for which the “error
cascade” story seems a more plausible justification to deviation from profit maximizing
behavior.
In other words, subjects’ heterogeneity seems one of key issues when reading the data,

even more when we provide a theoretical benchmark which allows for multiple equilibria.
In this respect, we shall remind the reader that, in this paper, heterogeneity is dealt in
two ways:

1. in Table A3 (in the Appendix), we measure our between subjects heterogeneity
by estimating the behavioral parameters of our model (i.e. our between subjects’
heterogeneity) are estimated -as constant, given the relative small number of obser-
vation per subjects (24)- subject by subject, while

2. in Table 5 we condition our (pool) estimates upon the observed heterogeneity mea-
sured by our questionnaire proxies.

Both approaches have limitations in that i) in the individual estimates, we cannot use
(against our own evidence) treatment conditions -such as αk- as explanatory variables in
the regressions, while ii) in our pool estimates (again, contradicted by our own evidence),
we are forced to estimate the behavioral characteristics of a “representative agent”, whose
estimated parameters greatly differ from those of many of our subjects, if not all.
Two recent papers (namely, Harrison and Rutström [19] and Conte et al. [10]) try to

solve the above problems by allowing for the possibility that more than one behavioral
model may be used to explain the history of the observed choices generated by the same
subject (or the same subject pool). To this aim, they employ mixture models to estimate
the probability that each of the assumed generating processes applies to the sample, es-
timating simultaneously-by maximum likelihood- the behavioral parameters associated
with each model. While Harrison and Rutström [19] run pooled regressions and control
for heterogeneity using questionnaire socio-demographics, Conte et al. [10] consider both
within-subjects and between subject heterogeneity, by estimating the distribution over
the entire population of the relevant parameters of the model. Although we are working
with nested models, as different types are simply characterized by different realizations
of the same parameter vectors, a mixture analysis may help us to track better the equi-
librium selection problem at the group level (i.e. the convergence of different matching
to different equilibria of the game).
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Appendix

7 Feri et al’s [13] “error cascades”

To evaluate profit maximizing behavior, we first estimate, at each round t and for each
matching group, behavioral strategies γ̂hit =

n
γ̂hit(gi)

o
, i = 1, 2, 3, as the relative frequency

of use of each possible guess at each information set. For information sets never reached
at t, we posit uniform play, i.e., we assign equal probability to each guess in G. All this
leads to a full-fledged system of behavioral strategies estimated at the beginning of round
t, which are constructed as follows:

γ̂hjt(gj) =

⎧⎨⎩
Pt−1

τ=1
χτ (h∧gj)Pt−1

τ=1
χτ (h)

if
Pt−1

τ=1 χτ (h) > 0
1
4
otherwise,

(10)

where χτ(Ξ) = 1 if the event Ξ occurs in round τ , and 0 otherwise. In words, to estimate
Player j’s behavioral strategy at h, Player i simply counts the number of times Player j
has guessed gj at h, conditional on h being visited sometime in the past. Otherwise, we
assume that i assigns a uniform probability distribution over j’s behavioral strategies at
h. Once these (assumed common) perceptions on behavioral strategies γ̂hit are derived,
we can evaluate the induced conditional probabilities of signals over guesses:

β
(g1)
1 =

⎧⎨⎩
(1−p)γ̂01(g1)

(1−p)γ̂01(g1)+pγ̂11(g1)
if g1 < 3,

pγ̂11(g1)

(1−p)γ̂01(g1)+pγ̂11(g1)
if g1 = 3;

(11)

β
(g1,g2)
2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
pγ̂

(g1,1)
2 (g2)

pγ̂
(g1,1)
2 (g2)+(1−p)γ̂(g1,0)2 (g2)

if

⎧⎪⎪⎨⎪⎪⎩
g2 = 3 or

g2 = 2, g1 < 3 and β
(g1)
1 > φ(p) or

g2 = 2, g1 = 3 and β
(g1)
1 < 1− φ(p)

(1−p)γ̂(g1,0)2 (g2)

pγ̂
(g1,1)
2 (g2)+(1−p)γ̂(g1,0)2 (g2)

otherwise.

with φ(x) = 1−2x
1−3x . As explained in Feri et al. [13], these probabilities are identified with

the beliefs (as held by other players) that Players 1 and 2 hold the signal that maximizes
the probability of winning the prize, conditional on their guesses. For our purposes, these
beliefs measure the extent of optimality embodied by the estimated strategies of Players
1 and 2. Given the beliefs β

(g1)
1t and β

(g1,g2)
2t induced by the empirical behavioral strategies

computed in (??), we are in a position to assess whether the behavior of Players 2 and 3
qualifies as optimal, i.e., maximizes expected payoffs given those beliefs. For each subject
(in player position) i, we construct an index variable brhit ∈ {0, 1}, which is equal to 1 if
and only if Player i selects the optimal guess at the information set h visited at t. Figure

2 tracks the relative frequency bit =
Pt

τ=1
brhiτ

t
with which, for each experimental group

and up to any round t = 1, ..., 20, each Player i = 1, 2, 3 submitted her optimal guess
(i.e., had brhit = 1).
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8 Additional statistical evidence

g2 0 1 2 3
s2 = 0 0 2 1 0

g1 = 0 % 0 .22 .68 0
s2 = 1 0 2 6 1

% 0 .22 .68 .1

s2 = 0 1 10 2 0
g1 = 1 % .08 .77 .15 0

s2 = 1 0 4 21 7
% .02 .31 .51 .16

s2 = 0 0 19 24 0
g1 = 2 % 0 .44 .56 0

s2 = 1 0 6 68 50
% 0 .05 .55 .4

s2 = 0 0 6 40 1
g1 = 3 % 0 .13 .85 .02

s2 = 1 0 5 17 1
% 0 .04 .15 .81

g2 0 1 2 3
s2 = 0 0 2 1 0

g1 = 0 % - .5 .14 0
s2 = 1 0 2 6 1

% - .5 .86 1

s2 = 0 1 10 2 0
g1 = 1 % 1 .71 .09 0

s2 = 1 0 4 21 7
% 0 .29 .91 1

s2 = 0 0 19 24 0
g1 = 2 % - .76 .26 0

s2 = 1 0 6 68 50
% - .24 .74 1

s2 = 0 0 6 40 1
g1 = 3 % - .54 .7 .01

s2 = 1 0 5 17 1
% - .45 .3 .99

a) b)

Tab. A1. Player 2’s aggregate behavioral strategies

s1 0 1
g1 0 1 2 3 0 1 2 3
G1 0 .4 .6 0 .05 .16 .37 .42
G2 0 0 .83 .17 .06 0 0 .94
G3 0 0 1 0 0 .3 .44 .26
G4 0 .29 .43 .28 0 .06 .65 .29
G5 0 .2 .8 0 0 0 .63 .37
G6 .12 .33 .22 .33 .4 .27 .2 .13
G7 0 .67 .33 0 0 .21 .5 .29
G8 .33 .33 .34 0 0 .17 .67 .16
G9 0 .2 .8 0 0 0 .32 .68
G10 0 0 1 0 0 0 .47 .53
G11 0 .12 .88 0 0 0 .06 .94
G12 0 .17 .67 .16 0 .11 .22 .67
G13 0 0 1 0 0 0 0 1
G14 .2 0 .6 .2 0 .11 .53 .36
G15 0 .67 .33 0 0 .14 .76 .1
G16 0 0 1 0 0 0 0 1

TOT .05 .22 .65 .08 .03 .09 .37 .51

Tab. A2. Player 1’s behavioral strategies diaggregated for matching groups
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λ1 λ2 λ3 θ21 θ31 θ32
G1 2.49** 7.5*** -.65 -.9 -.69 -.11
G2 12*** 3.04*** .12 -.001 .12 .82***
G3 3.67** 5.65*** 3.32*** 1.12** .88* .4
G4 3.03* 3.45*** 4.12*** -.16 1.14 .26
G5 9.8*** 3.78*** 4*** .28* .6*** .55**
G6 -.47 1.04 .43 -.59 -1.5 -.8
G7 17*** 6.4*** 1.48*** .92*** .01 -.05
G8 4.7*** 6.72*** .86 .97*** .88* .68***
G9 11*** 7.9*** .97** .44** -.33 .31*
G10 10.6*** 5.01*** .18 .36 .19 -.11
G11 18*** 7.76*** 1.04** -.09 -.15 -.23
G12 5.2*** 4.5*** 1.6*** .24 -.05 .05
G13 ∞ 6.6*** 2.05 - - -.02
G14 3.7 3.14*** .84 .26 .22 .35*
G15 5.1*** 2.67*** 2.31*** .81*** -.32 .74***
G16 ∞ 7.21*** 2.41*** - - -.3

TOT 5.32*** 4.37*** 1.3*** .37*** -.02 .34**

Tab. A3. Structural estimation of (7) by cluster
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9 The Experimental instructions

9.1 Welcome to the experiment

This is an experiment to study how people solve decision problems. Our unique goal is
to see how people act on average; not what you in particular are doing. That is, we do
not expect any particular behavior of you. However, you should take into account that
your behavior will affect the amount of money you will earn throughout the experiment.
These instructions explain the way the experiment works and the way you should use your
computer. Please do not disturb the other participants during the course experiment.
If you need any help, please, raise your hand and wait quietly. You will be attended as
soon as possible.

9.2 The game

This experimental session consists of 20 rounds in which you and two additional persons
in this room will be assigned to a group, that is to say, including you there will be a
total of three people in the group. You, and each of the other two people, will be asked
to make a choice. Your choice (and the choices of the other two people in your group)
will determine the amount of money that you will earn after each round. Your group
will remain the same during the whole experiment. Therefore, you will be always playing
with the same people. During the experiment, your earnings will be accounted in pesetas.
At the end of the experiment you will be paid the corresponding amount of Euros that
you have accumulated during the experiment.
The game. Notice that you have been assigned a player number. Your player number

is displayed at the right of your screen. This number represents your player position in
a sequence of 3 (Player 1 moves first, Player 2 moves after Player 1 and Player 3 moves
after Players 1 and 2). Your position in the sequence will remain the same during the
entire experiment. At the beginning of each round, the computer will assign to each
person in your group (including yourself) either 0 tokens or 1 token. Within each group,
each player is assigned 0 tokens with a probability of 25% and is assigned 1 token with a
probability of 75%. The fact that a player is assigned 0 tokens or 1 token is independent
of what other players are assigned; that is to say, the above probabilities are applied
separately for each player.
At each round, the computer executes again the process of assignment of tokens to

each player as specified above. The number of tokens that each player is assigned at
any particular round does not depend at all on the assignments that he/she had in other
rounds. You will only know the number of tokens that you have been assigned (0 or 1),
and you will not know the number of tokens assigned to the other persons in your group.
The same rule applies for the other group members (each of them will only know his/her
number of tokens).
At each round you will be asked to make a guess over the total number of tokens

distributed among the tree persons in your group (including yourself) at the current
round. The other members of your group will also be asked to make the same guess. The
order of the guesses corresponds to the sequence of the players in the group. That is to
say: Player 1 makes his/her guess first, then Player 2 makes his/her guess and, finally,
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Player 3 makes his/her guess. Moreover, you will make your guess knowing the guesses
of the players in your group that moved before yourself. Therefore, Player 2 will know
Player 1’s guess and Player 3 will know both Player 1 and Player 2’s guesses.
At each round, if you make the correct guess you will win a prize of 100 pesetas and

if your guess is not the correct one you will earn nothing.

9.3 The SELECTED PLAYER (el JUGADOR ELEGIDO)

In each round, the computer will select one player in your group at random. We shall
call her the SELECTED PLAYER. Her identity will vary from one round to the next,
so that, you and the other group members will be selected the same number of time,
approximately.
WHAT DOES IT MEAN TO BE SELECTED?
While those players who have not been elected, in case of guessing right, win the

prize with certainty, the SELECTED PLAYER win the prize with a certain probability,
randomly selected by the computer. This probability, together with the identity of the
SELECTED PLAYER, will be communicated to all group members at the beginning of
each round.

10 The Questionnaire

As we just anticipated, our questionnaire is divided into four different groups of questions.

10.1 Demographics

1. What is your age?.....years.

2. What is your gender?

3. Which is your university degree?.....

4. How many years have you been studying at the university?

5. What is your relationship with the main source of income in your family?

6. What is the labor position of the person who contributes the main source of income
in your family?

7. What was the highest level of education that the main source of income in your
family completed?

8. How many people live in your household?

9. How many rooms does the house have you are living in?

10. Did you work during the last week?

11. On average, what is your weekly budget?.....euros

12. What is your health?
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10.2 Risk attitudes: Holt and Laury’s [20] test

1. Which of these two lotteries do you prefer?

(a) Winning 2.00$ with probability of 1 in 10 and winning 1.60$ with probability
of 9 in 10.

(b) Winning 3.85$ with probability of 1 in 10 and winning 0.10$ with probability
of 9 in 10.

2. Which of these two lotteries do you prefer?

(a) Winning 2.00$ with probability of 2 in 10 and winning 1.60$ with probability
of 8 in 10.

(b) Winning 3.85$ with probability of 2 in 10 and winning 0.10$ with probability
of 8 in 10.

3. Which of these two lotteries do you prefer?

(a) Winning 2.00$ with probability of 3 in 10 and winning 1.60$ with probability
of 7 in 10.

(b) Winning 3.85$ with probability of 3 in 10 and winning 0.10$ with probability
of 7 in 10.

4. Which of these two lotteries do you prefer?

(a) Winning 2.00$ with probability of 4 in 10 and winning 1.60$ with probability
of 6 in 10.

(b) Winning 3.85$ with probability of 4 in 10 and winning 0.10$ with probability
of 6 in 10.

5. Which of these two lotteries do you prefer?

(a) Winning 2.00$ with probability of 5 in 10 and winning 1.60$ with probability
of 5 in 10.

(b) Winning 3.85$ with probability of 5 in 10 and winning 0.10$ with probability
of 5 in 10.

6. Which of these two lotteries do you prefer?

(a) Winning 2.00$ with probability of 6 in 10 and winning 1.60$ with probability
of 4 in 10.

(b) Winning 3.85$ with probability of 6 in 10 and winning 0.10$ with probability
of 4 in 10.

7. Which of these two lotteries do you prefer?
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(a) Winning 2.00$ with a probability of 7 in 10 and winning 1.60$ with probability
of 3 in 10.

(b) Winning 3.85$ with a probability of 7 in 10 and winning 0.10$ with probability
of 3 in 10.

8. Which of these two lotteries do you prefer?

(a) Winning 2.00$ with probability of 8 in 10 and winning 1.60$ with probability
of 2 in 10.

(b) Winning 3.85$ with probability of 8 in 10 and winning 0.10$ with probability
of 2 in 10.

9. Which of these two lotteries do you prefer?

(a) Winning 2.00$ with probability of 9 in 10 and winning 1.60$ with probability
of 1 in 10.

(b) Winning 3.85$ with probability of 9 in 10 and winning 0.10$ with probability
of 1 in 10.

10.3 Frederick’s [16] Cognitive Reflection Test

1. A bat and a ball cost C= 1.10 in total. The bat costs C= 1.00 more than the ball.
How many cents does the ball costs? ... cents. (Answer: 5).

2. If it takes 5 machines, 5 minutes to make 5 widgets, How many minutes would it
take 100 machines to make 100 widgets?... minutes. (Answer: 5).

3. In a lake, there is a patch of lily pads. Every day, the patch double in size. If it
takes 48 days for the patch to cover the entire lake, how many days would it take
for the patch to cover half of the lake ... days. (Answer: 47).
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