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Abstract

This paper provides an econometric examination of geographic R&D spillovers among

countries by focusing on the issue of cross-sectional dependence, and in particular on the

different ways – weak and strong – it may affect the model. A preliminary analysis based

on the estimation of the exponent of cross-sectional correlation proposed by Bailey et al.

(2013), a, provides a very clear-cut result with an estimate of a very close to unity, not only

indicating the presence of strong cross-sectional correlation but also being consistent with the

factor literature typically assuming that a = 1. Moreover, second generation unit roots tests

suggest that while the unobserved idiosyncratic component of the variables under study may

be stationary, the unobserved common factors appear to be nonstationary. Consequently,

a factor structure appears to be preferable to a spatial error model and in particular the

Correlated Common Effects approach is employed since, among other things, it is still valid

in the more general case of nonstationary common factors. Finally, comparing the results

with those obtained with a spatial model gives some insights on the possible bias occurring

when allowing only for weak correlation while strong correlation is present in the data.
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1 Introduction

Since the seminal paper by Coe and Helpman (1995), henceforth CH (recently revisited by Coe et

al., 2009), there has been an increasing interest in international technology diffusion. CH test the

predictions of models of innovation and growth (Grossman and Helpman, 1991) in which total fac-

tor productivity (TFP) is an increasing function of cumulative research and development (R&D).

In particular, CH analyse the role of international trade. By assuming that some intermediate

inputs are traded internationally, whereas others are not, they relate TFP to both domestic and

foreign R&D and construct the foreign R&D capital stock as the import-share weighted average of

the domestic R&D capital stocks of the trading partners. The influence of this approach is based

on its plausibility with respect to endogenous growth theory (Keller, 2004) and its versatility in

allowing for the consideration of alternative channels of international technology diffusion, such as

foreign direct investment (FDI) (Lichtenberg and Van Pottelsberghe, 2001), bilateral technologi-

cal proximity and patent citations between countries (Lee, 2006), language skills or geographical

proximity (Keller, 2002).

The present paper aims to contribute to the empirical literature on R&D spillovers among

countries by focusing on the issue of cross-sectional dependence. The rationale is that cross-

country correlation from a variety of sources can plausibly be present in CH-type specifications;

however, this correlation complicates standard estimation and inference.

Cross-sectional dependence can be introduced as a result of a finite number of unobservable

(and/or observed) common factors that may have different effects on TFP across countries. Such

factors might include, for instance, aggregate technological shocks, national policies aimed at

raising the level of technology or oil price shocks that may influence TFP through their effects

on production costs. The heterogeneous effect of these factors may be the result, for instance,

of country-specific technological constraints. A model with multifactor error structure can be

estimated adopting the correlated common effects (CCE) approach developed by Pesaran (2006),

which has been further developed and proved to be valid in a variety of situations (Chudik et

al., 2011; Pesaran and Tosetti, 2011; Kapetanios et al., 2011). Cross-sectional correlation can be

alternatively posed as a result of spatial spillover effects and can be modeled by adopting a spatial

panel econometric framework allowing for spatially correlated disturbances. The estimation can be

performed using Lee and Yu’s (2010) quasi-maximum likelihood (QML) estimator. Some remarks

are in order.

First, the unobserved common factors approach and the spatial error model are related to the

recently developed concepts of weak and strong cross-sectional dependence. Although the litera-

ture does not provide a unique definition of ”weak” and ”strong” dependence (see, e.g., Chudik

et al., 2011, and Sarafidis, 2009), it is interesting to note that the spatial models, under a stan-

dard set of regularity conditions, entail weak cross-sectional correlation regardless of the definition

adopted (Breitung and Pesaran, 2008; Pesaran and Tosetti, 2011; Sarafidis and Wansbeek, 2012),

whereas the type of dependence arising from the factor model depends on the adopted definition
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of weak/strong dependence and the limiting properties of averaged factor loadings (Sarafidis and

Wansbeek, 2012). A related concept is that of strong and weak factors recently proposed by

Chudik et al. (2011). The authors demonstrate that there is a direct relationship between the

concept of weak/strong factors and their conception of weak/strong dependence. They demon-

strate that a process that is the sum of a finite number of common factors and an idiosyncratic

error term is cross-sectionally strongly dependent at a given point in time if at least one of those

common factors is strong. Specifically, the CCE approach explicitly introduces a finite number of

strong factors, entailing strong dependence, but does not explicitly introduce weak factors.

Second, the most general model would obviously allow for both forms of dependence – weak

and strong – as suggested by some recent papers (Pesaran and Tosetti, 2011; Chudick et al., 2011;

Bresson and Hsiao, 2011; Bailey et al. 2013b). However, the CCE approach has been shown to be

valid even in this case. In particular, Pesaran and Tosetti (2011) prove that the CCE estimator

provides consistent estimates of the slope coefficients and their standard errors under a generalized

data generating process (DGP) with an error term that is the sum of a multifactor structure and

a spatial process, i.e. when both forms of cross-correlation – weak and strong – characterize the

DGP. Moreover, Chudik et al. (2011) extended the CCE approach by allowing for the presence

of both a limited number of strong factors and a large number of weak or semi-strong factors and

then show that, even under this extended framework, the CCE method still provides consistent

estimates of the slope coefficients.

Third, while both factor and spatial models allow for cross-section correlation, the motivations

underlying such models differ importantly. In the first approach, the unobserved factors are

viewed as nuisance variables introduced to allow for cross-sectional dependence and to capture

information in a parsimonious way, whereas the main focus is on the estimation and inference of

the slope parameters. Moreover, this set-up introduces endogeneity due to unobservables, whereby

the explanatory variables are allowed to be correlated with the factors. Bai (2009) and Sarafidis

and Wansbeek (2012) provide many examples of circumstances under which this may occur, such

as production and cost function specifications. This can also be relevant in the CH specification,

as stressed by Keller (2004, p.763). The spatial models, instead, aim to model interactions among

cross-sections, such as spillover effects. Such cross-section interactions will produce differentiated

impact coefficients computed from the reduced form of the spatial model (see e.g., Debarsy and

Ertur, 2010). Moreover, spatial models have been shown to be relevant in many contexts which

are related to this paper such as neoclassical and endogeneous growth models (Ertur and Koch,

2007, 2011).

We argue that, when analysing international R&D spillovers, there are neither theoretical

reasons nor well-established empirical evidence allowing for an a priori choice between the spatial

approach and the factor model. If the data exhibit only weak correlation, this could be an

indication of the necessity to model spatial interactions while if strong correlation is present,

this would suggest that relevant variables have not been accounted for in the original formulation

or that both forms of correlation may affect the model. In this paper, we first focus on testing

3



and measuring cross section correlation. This appears very relevant from both a theoretical and a

policy oriented perspective. According to the obtained results, we finally estimate the model with

the most suitable approach and provide some new results.

The remainder of the paper is organized as follows: section 2 describes the baseline model.

Section 3 extends the benchmark specification by allowing for cross-sectional dependence. Section

4 presents the results. Finally, section 5 concludes.

2 Baseline econometric specification

The baseline econometric model is an extended version of that adopted by CH, as modified by

Coe et al. (2009) by including human capital on the right-hand side of the equation:

fit = exp(αi + eit)
(
Sdit
)θ (

Sfit

)γ
Hδ
it (1)

where fit is the total factor productivity of country i = 1, ..., N at time t = 1, ..., T ; αi are

individual fixed effects that take into account unobserved time-invariant characteristics, which are

allowed to be freely correlated with both R&D capital stocks (domestic, Sdit, and foreign, Sfit) and

human capital (Hit); and eit is the error term. The foreign capital stock Sfit is defined as the

weighted arithmetic mean of Sdjt for j 6= i :

Sfit =
∑
j 6=i

ωijS
d
jt (2)

where wij represents the weighting scheme. The model is then linearised by taking logs:

log fit = αi + θ logSdit + γ log
∑
j 6=i

ωijS
d
jt + δ logHit + eit (3)

It is interesting to note that this simple empirical specification can be derived from an endoge-

nous growth model (see, e.g., Keller, 2004, p. 762). However, as noted by Lichtenberg and Van

Pottelsberghe (2001, p. 490), International technological spillovers have no widely accepted mea-

sures”. According to Keller (2004), the main channels of technology diffusion are trade, FDI and

language skills. For instance, Coe et al. (2009) and Lichtenberg and Van Pottelsberghe (1998) use

alternative definitions of wij based on imports, Lichtenberg and Van Pottelsberghe (2001) focus

on FDI, and Musolesi (2007) adopts a weighting scheme that takes language skills into account.

More recently, Spoalore and Warcziag (2009) suggest genetic distance as a barrier to the diffusion

of development.

In this paper, we focus on geographical proximity as a channel for technology diffusion for

many reasons. First, it is theoretically consistent. Keller (2002) and Eaton and Kortum (2002)

show that international technology diffusion is related to geographical distance due to transport

costs or geographical barriers. Second, the geographic localisation of international technology

diffusion can have economically relevant implications. Specifically, it can affect the process of
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convergence across countries (Grossman and Helpman, 1991), the agglomeration that takes place

in an economy (Krugman and Venables, 1995) and the long-term effectiveness of macroeconomic

policies aimed at technological progress (Keller, 2002). Third, there have been far fewer studies

on geographic international R&D spillovers than on spillovers via other channels, such as trade

or FDI, in spite of the theoretical consistency and empirical relevance of geography. Finally, and

perhaps most importantly in the context of this paper, which focuses on the methodological is-

sue of cross-sectional dependence, traditional channels of international technology diffusion might

create reverse causality problems when included in econometric specifications. For instance, a

country’s international trade, FDI or patent activity may depend on its technological level and,

in turn, might be endogenous with respect to TFP (see, e.g., Hong and Sun, 2011). In contrast,

geographical distance is generally considered exogenous, “Global technology spillovers favor in-

come convergence, and local spillovers tend to lead to divergence, no matter through which channel

technology diffuses. . . An advantage of this is that geography is arguably exogenous in this pro-

cess” (Keller, 2004, p.772). Moreover, geographical distance may be considered an exogenous

proxy for certain endogenous measures of socioeconomic, institutional, cultural or language-based

similarities that might enhance the diffusion of technology. Following Keller (2002), we propose

a specification of foreign R&D that incorporates the notion that the impact of foreign R&D is a

decreasing function of geographical distance from foreign economies. Therefore, the foreign R&D

capital stock for each country i is obtained by weighting the domestic R&D capital stocks of every

other country j 6= i in the sample using an exponential distance decay function, ωij = exp(−ϕdij),
such that

Sfit =
∑
j 6=i

exp(−ϕdij)Sdjt (4)

where dij represents the geographic distance between country i and country j. Finally, to construct

the stock of human capital, we use the average number of years of schooling in the population

over 25 years old. Following Hall and Jones (1999), this parameter is converted into a measure of

human capital stock through the following formula:

Hit = exp [g (Eduit)] (5)

where Eduit is the average number of years of schooling and the function g (Eduit) reflects the

efficiency of a unit of labor with Edu years of schooling relative to one with no schooling. Following

Psacharopoulos (1994) and Caselli (2005), it is assumed that g (Eduit) is piecewise linear, which

implies a log-(piecewise)linear relationship between H and Edu.1 Combining equations (4) and

(5):

log fit = αi + θ logSdit + γ log
∑
j 6=i

exp(−ϕdij)Sdjt + δ logHit + eit (6)

If there are positive geographical spillovers (if foreign R&D enhances domestic productivity, γ > 0),

then a positive value of ϕ indicates that the impact of such spillovers decreases non-linearly with

1with slope 0.134 for 0 < Edu ≤ 4, 0.101 for 4 < Edu ≤ 8, and 0.068 for Edu > 8.
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distance, whereas a negative value of ϕ suggests that the benefits of foreign R&D are increasing

with distance. Finally, ϕ = 0 indicates that the impact of spillovers does not depend on the

distance separating two countries. To allow the impact of foreign R&D capital to differ between

the G7 countries and the others, the benchmark specification we adopt is a simple variant of

equation (6) that has been widely used in the literature:

log fit = αi + θ logSdit + γG71G7 log
∑
j 6=i

exp(−ϕG7dij)S
d
jt+ (7)

+ γNOG71NOG7 log
∑
j 6=i

exp(−ϕNOG7dij)S
d
jt + δ logHit + eit

with:1G7 =

{
1 if country ∈ G7 group

0 if country /∈ G7 group
, and: 1NOG7 = 1− 1G7

In the following, for ease of exposition, we define:

Equation (7) can then be expressed as:

yit = αi + β
′
xit + eit (8)

where:

yit = log fit

xit = [log(Sdit),1G7 log
∑
j 6=i

exp(−ϕG7dij)S
d
jt,1NOG7 log

∑
j 6=i

exp(−ϕNOG7dij)S
d
jt, log(Hit)]

′

β = [θ, γG7, γNOG7, δ]
′

Because one of our main objectives is the comparison of the results with previous studies on

international R&D spillovers, which do not consider the issue of cross-sectional correlation, our

main source is the CH data set, which has been widely used in the literature (see Table 1). This

data set is a balanced panel of 21 OECD countries plus Israel observed over the period 1971-90.

Our measures of TFP and domestic R&D capital stock come from this data source. The average

number of years of schooling used to construct our measure of human capital is taken from Barro

and Lee (2001), as in Coe et al. (2009). Finally, the distance between two countries is calculated

as the spherical distance between capitals.

3 Strong and weak cross-sectional correlation

In order to introduce cross-sectional correlation in the benchmark specification defined by equation

(8), following Sarafidis (2009) and Sarafidis and Wansbeek (2012), a general error structure can

be considered:

eit = (%i �wi)
′ ξt + εit =

m∑
j=1

%ijwijξjt + εit (9)
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where � denotes the Hadamard product, ξt = (ξ1t, ξ2t, ..., ξmt)
′ is a m × 1 vector of unobserved

common factors, %i = (%i1, %i2, ..., %im)′ is a m×1 vector of factor loadings, wi = (wi1, wi2, ..., wim)′

is a m × 1 vector of deterministic bounded weights and εit ∼ i.i.d. (0, σ2
ε). Equation (9) allows

us to regard the unobserved components, ξt as shocks, the impact of which are a combination of

heterogeneous factor loadings (%i) with a weight scheme (wi).

Setting wi = ι, ι as a vector of ones, equation (9) boils down to the multifactor error structure:

eit = %
′

iξt + εit =
m∑
j=1

%ijξjt + εit (10)

With m = N , the N common factor model (Chudick et al., 2011) is obtained:

eit =
N∑
j=1

%ijξjt + εit. (11)

In matrix form, stacking over individuals, we obtain the following:

et = Pξt + εt (12)

where ξt = ξt = (ξ1t, ξ2t, ..., ξNt)
′ is a N × 1 vector of unobserved factors, P is a N ×N matrix of

associated factor loadings with typical element {%ij} and εt = i.i.d. (0, σ2
εIN).

Imposing appropriate zero restrictions on wi, at least wij = 0 for i = j, homogeneity restrictions

on %i = λ,∀i, and setting ξjt = ejt, for j = 1, ..., N , with m = N , equation (9) boils down to a

spatial autoregressive error specification:

eit = λ
N∑
j=1

wijejt + εit (13)

that can be rewritten in matrix form as follows:2

et = λWNet + εt (14)

where WN is defined in the spatial econometrics litterature as an N × N interaction or spatial

weight matrix. It is most of the time not derived from theory, but exogeneously given as to

reflect the interaction pattern connecting individuals, which is considered to be time invariant.3

Its elements are non stochastic, non negative and finite.4 Under the invertibility condition of

(IN − λWN), we obtain:

et = RNεt (15)

2It is worth noting that equation (9) also contains the spatial moving average process, i.e., eit = λ
∑

j 6=i wijεjt +

εit, and the spatial error component process, eit = λ
∑

j 6=i wijςjt+εit where E(ςjt) = 0, V (ςjt) = σ2
ς and E(ςjtεit) =

0 as special cases.
3An exception is Lee and Yu (2012).
4An exception where it is theoretically defined is for instance Behrens et al. (2010).
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where RN = (IN−λWN)−1. Note that WN and RN must satisfy some regularity conditions given

for instance by Lee (2004) for QML estimation.5 Those conditions mainly require that WN and

RN be uniformly bounded in row and column sums both at the true value of the λ parameter and

uniformly in λ in a compact parameter space Λ. The true value of the λ parameter being in the

interior of Λ.6

It may be useful to understand how these two approaches are related to the concepts of weak

and strong cross-sectional dependence recently developed in the literature. Forni and Lippi (2001)

introduce the notion of an idiosyncratic process to characterise a weak form of dependence that

involves both time series and cross-sectional dimensions. More recently, Chudick et al. (2011)

(henceforth CPT) propose a new and more widely applicable definition. They consider the asymp-

totic behavior of weighted averages at each point in time and define a process {zit} to be cross-

sectionally weakly dependent at a given point in time if its weighted average at that time, condi-

tional on the information set available in the previous period, =t−1, converges to its expectation in

quadratic mean, as the cross-sectional dimension is increased without bounds for all weights, w,

that satisfy certain granularity conditions ensuring that the weights are not dominated by a few

individuals,7 that is, lim
N→∞

V ar
(∑N

i=1wijzit | =t−1
)

= 0. Another definition has been recently pro-

posed by Sarafidis (2009) (henceforth, SARA), who defines a process {zit} to be cross-sectionally

weakly dependent if
∑

j 6=i |Cov (zit, zjs|Fij)| < ∞, where Fij denotes the conditioning set of all

time-invariant characteristics of individuals i and j.8

Spatial error models satisfy, under a standard set of regularity conditions, weak dependence

under both definitions. For example, the standard uniform boundedness conditions given by Lee

(2004) are sufficient but not necessary to guarantee weak dependence.9

Conversely, the factor approach entails strong dependence under both definitions unless further

restrictions are imposed on the factor loadings. To see this relation, consider the single factor

error process eit = %iξt + εit. With N and T both large and noticing that σij,t = cov (eit, ejt|Fij) =

%i%jσ
2
ξ 6= 0; therefore,

∑
j 6=i |σij,t| is unbounded, thus entailing strong correlation under SARA.

A related concept is that of strong and weak factors (Chudik et al. 2011). Let b be a constant

in the range 0 ≤ b ≤ 1, and consider the condition lim
N→∞

N−b
∑N

i=1 |%i| = K < ∞. According to

Chudik et al. (2011), the strong and weak factors correspond to b = 1 and b = 0, respectively.

For b ∈ (0, 1), the factor ξt is said to be semi-strong (1/2 ≤ b < 1) or semi-weak (0 < b < 1/2).

Thus, b = 0 implies that the factor affects only a fixed number of cross-sectional units, whereas

b < 1 means that the subset of cross-sectional units affected by the factor grows more slowly than

N at a rate depending on b. Under CPT, if there exists at least one strong factor, the underlying

5Those assumptions are all originated in Kelejian and Prucha (1998, 1999, 2001).
6A slightly different set is given for instance by Kelejian and Prucha (2010) for GMM estimation along with a

detailed discussion of the parameter space.
7The definition of idiosyncratic process advanced by Forni and Lippi (2001) and the definition by CPT of weak

dependence differ in the way the weights used to construct weighted averages are defined.
8Robinson (2011) and Robinson and Thawornkaiwong (2012) give a very similar definition.
9See Sarafidis and Wansbeek (2012) for a more detailed discussion.
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process is strongly cross-sectionally dependent; otherwise, it is cross-sectionally weakly dependent.

As also noted by Chudik et al. (2011), the CCE approach by Pesaran (2006) explicitly introduces

a finite number of strong factors according to their definition of strong and weak factors. Thus, it

entails strong dependence under both SARA and CPT.

3.1 Strong correlation: errors with multifactor structure

The empirical setup adopted in this paper builds on the framework originally proposed by Pesaran

(2006) and further developed and studied more recently (Chudik et al. 2011; Pesaran and Tosetti,

2011; Kapetanios et al. 2011). Such a framework has a number of appealing features. It is

sufficiently general to render a variety of panel data models as special cases, it allows correlated

common factors, it does not require specifying the number of factors, and it is computationally

very simple.10

Let us consider the following DGP:

yit = α
′

idt + β
′

ixit + eit (16)

where dt is a l × 1 vector of observed common effects, α
′
i is the associated vector of parameters

and xit is a 4× 1 vector of explanatory variables. The ’one-way’ specification is simply obtained

by setting dt = 1. The slope coefficients β′i = [θ, γG7, γNOG7, δ] can be assumed to be fixed and

homogeneous across countries, β′i = β′ ∀ i, or assumed to follow a random coefficients specification:

βi = β + vi, vi ∼ IID (0,Θv) . The errors eit are assumed to have a multifactor structure as in

equation (10):

eit = %
′

iξt + εit (17)

where ξt is a m× 1 vector of unobserved common factors with country-specific factor loadings %i.

Combining (16) with (17), we thus obtain the following:

yit = α
′

idt + β
′

ixit + %
′

iξt + εit (18)

where the idiosyncratic errors, εit, are assumed to be independently distributed over (dt,xit) ,

whereas the unobserved factors, ξt, can be correlated with (dt,xit). This correlation is allowed by

10In the macro panel data literature, the standard approach to addressing cross-sectional correlation has been to

adopt a seemingly unrelated regressions (SURE) framework and estimate that system of equations by generalised

least squares. The SURE approach, however, is not applicable if the panel has a large cross-sectional dimension

because it involves nuisance parameters that increase at a quadratic rate as the cross-sectional dimension of the

panel is allowed to rise. Moreover, an often questionable assumption behind this approach is that the errors are

uncorrelated with the regressors. This has led to the consideration of unobserved factor models. Coakley et al.

(2002) propose a principal component approach requiring, however, that the unobserved factors be uncorrelated

with the explanatory variables to be consistent. Other estimators based on principal component analysis have

been proposed by Kapetanios and Pesaran (2007) and Bai (2009). For a fixed time dimension, however, both are

inconsistent under serial correlation or heteroskedasticity (see, also, Sarafidis and Wansbeek, 2012).
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modeling the explanatory variables as linear functions of the observed common factors dt and the

unobserved common factors ξt:

xit = A′idt + Γ′iξt + vit (19)

where Ai and Γi are l × 4 and m × 4 factor loadings matrices and vit = (vi1t, vi2t, , vi3t, vi4t)
′.

Combining (18) and (19), we finally obtain a system of equations simultaneously explaining TFP,

R&D (domestic and foreign) and human capital:

zit
5×1

=

(
yit

xit

)
=



log (fit)

log(Sdit)

1G7 log
∑
j 6=i

exp(−ϕG7dij)S
d
jt

1NOG7 log
∑
j 6=i

exp(−ϕNOG7dij)S
d
jt

log(Hit)


= B′i

5×l
dt
l×1

+ C′i
5×m

ξt
m×1

+ uit
5×1
, (20)

where:

uit =

(
1 β′i
0 Ik

)(
εit

vit

)
=

(
εit + β′ivit

vit

)
,

Bi =
(
αi Ai

)( 1 0

βi Ik

)
,

Ci =
(
%i Γi

)( 1 0

βi Ik

)
,

where Ik is an identity matrix of order k. In our specific case, k = 4.

Under the restrictive assumption of homogeneous factor loadings and homogeneous slope pa-

rameters, it is possible to consistently estimate the slope coefficients by ordinary least squares

(OLS): one may adopt either a two-way fixed-effects model or a first difference specification aug-

mented with time dummies (Eberhardt and Bond, 2009). To consistently generalise the model

to heterogeneous factor loadings, we adopt the Pesaran CCE (2006) approach, which solves the

identification problem by augmenting the regression with proxies for the unobserved factors. Pe-

saran suggests using [d′t z′wt] as observable proxies for the unobserved factors, and zwt indicates

the cross-sectional average: zwt =
∑N

j=1wjzjt, wj are weights equal to 1/N. The individual slopes

β
′
i or their mean can be consistently estimated by regressing yit on xit,dt and zwt. This type of

estimator is referred to as a common correlated effect estimator. In particular, Pesaran (2006) pro-

poses two estimators of the individual coefficients’ mean, β : the CCE pooled estimator (CCEP)

and the Mean Group estimator known as CCEMG, which is obtained by averaging the country-

specific estimates following Pesaran and Smith (1995), which also allows the slope parameters

to differ across cross-sections. As an alternative to the CCEMG, Eberhardt and Bond (2009)

and Eberhardt and Teal (2010) propose the Augmented Mean Group estimator, where the Mean

Group group-specific regressions are augmented with a preliminary OLS estimate of a ”common
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dynamic process”. Note, however, that whereas in Eberhardt and Teal’ s (2010) production func-

tion framework, such a common dynamic process represents the estimated cross-sectional average

of the unobservable TFP (the ”residual”), in our empirical setup, where the dependent variable is

TFP itself, the common dynamic process does not seem to have a straightforward interpretation.

In this paper, we focus on the CCEP estimator (and assume β′i = β′ ∀ i).
Some remarks are in order. First, and very important, this set-up introduces endogeneity,

whereby the xit are correlated with the unobservable eit via the correlation between ξt and xit.

As noted by Kapetanios et al. (2011), standard approaches that neglect common factors fail to

identify β′i; instead, they yield an estimate of:

κ′i = β′i + %′iΓ
′−1
i . (21)

The estimation bias is thus function of the factors loadings %′i and Γ′i only.11 Second, specifying

a factor-loadings matrix Ci of the kind presented above permits a variety of situations, as each

variable is allowed to be affected in a specific way by each factor because the typical element of

such a matrix, say cimj, measures the country-specific effect (eventually being zero) of the mth

common factor on the jth variable. For example, it may allow some of the unobserved common

factors driving the evolution of TFP to also drive the variation in R&D and human capital stocks.

Such factors may be linked to oil price shocks or global policies aimed at raising the level of

technology, for example. It could also allow other factors to specifically affect only one variable in

the system.12

It is finally worth recalling some recent results concerning the validity of the CCE approach

when the underlying DGP is also characterised by weak factors or spatial error correlation. Chudik

et al. (2011) also extended the CCE approach by allowing for the presence of both a limited num-

ber of strong factors and a large number of weak or semi-strong factors and then show that,

even under this extended framework, the CCE method still provides consistent estimates of the

slope coefficients. Pesaran and Tosetti (2011) prove that the CCE estimator provides consistent

estimates of the slope coefficients and their standard errors under the more general case of a multi-

factor error structure and spatial error correlation (see, also, Bresson and Hsiao, 2011, for further

simulation results), i.e. when both forms of cross-correlation – weak and strong – characterise the

DGP:

eit = %′iξt + λ
∑
j 6=i

wijejt + εit. (22)

11To see how this may occur, let us rewrite the model for yit as in Kapetanios et al. (2011) equation (52):

abstracting from dt, assuming that k (the number of regressors)= m(the number of common unobserved factors)

and that Γi is invertible, we can write the following: yit = β
′

ixit + %
′

iΓ
′−1
i (xit − vit) + εit = κ

′

ixit +κit, where κ
′

i =

β
′

i + %
′

iΓ
′−1
i and κit = εit− %

′

iΓ
′−1
i vit. Therefore, applying least squares to such an equation consistently estimates

κ
′

i rather than β
′

i .
12To make this feature more apparent, Eberhardt and Teal (2010) adopt a scalar notation and replace equation

(19) with xkit = π′kidkt + δ′kigkt +ϑ1kiξ1kt + ...+ϑlkiξlkt +ωkit, where k = 1, ..., 3 and gkt are common factors that

are specific to each regressor.
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This appears as a very appealing feature since it could be that both forms of dependence are

present in the data as shown for instance by Bailey et al. (2013b).

3.2 Weak correlation: errors with spatial autocorrelation

We consider the following panel model with spatially autocorrelated error terms:

yit = αi + β′xit + eit

(23)

eit = λ
∑
j 6=i

wijejt + εit

where λ is the spatial autoregressive parameter. For λ = 0, equation (21) simply reduces to the

baseline a-spatial specification (8). To obtain a better understanding of such a spatial process, it

is useful to examine the so-called reduced form. In matrix form, stacking over all individuals for

time period t, we have the following:

yt = α + Xtβ + et (24)

et = λWNet + εt t = 1, ..., T

where yt represents the N × 1 vector of log TFP, Xt is the N × 4 matrix of explanatory variables

and WN is an N × N row-normalised interaction matrix.13 Under the invertibility condition of

(IN − %WN), equation (24) can be rewritten in its reduced form representation::

yt = α + Xtβ + (IN − λWN)−1εt (25)

where (IN−λWN)−1 is the so-called global spatial multiplier. This reduced form has the following

important implications. First, in the conditional mean, the total factor productivity in country i

will only be affected by the domestic R&D capital stock or human capital stock in the same country

i and not by those in any other country j, exactly as in the standard a-spatial panel data model.

Therefore there are no spatial spillover effects in this model.14 Second, and more specifically, one

can easily see that a random shock due to unobservable factors (i.e., a shock in the disturbances)

in a specific country i not only affects TFP in country i, but it also has an impact on TFP in all

the countries of the sample through the inverse spatial transformation (IN − λWN)−1: this is the

so-called global spatial diffusion process of a random shock, which can be expressed as follows:15

Ξε
y ≡

∂yt
∂ε′t
≡ (IN − λWN)−1 = IN + λWN + λ2W 2

N + λ3W 3
N + ... (26)

13According to Lee and Yu (2010), it allows us to consider the parameter space for λ to be a compact subset

of (−1, 1). Row-normalization also facilitates the interpretation of the results but is not theoretically necessary

(Kelejian and Prucha, 2010).
14In contrast, such spatial spillovers exist in the spatially lagged endogenous variable model, sometimes referred

to as the mixed regressive spatial autoregressive model, or the SAR model in the spatial econometric literature.
15Note that the use of the term diffusion only refers here to the spatial dimension, not to the space-time dimension,

and therefore might be misleading.
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where Ξε
y is a N×N matrix of the partial derivatives of yt with respect to the disturbance εt. This

matrix is in general full and not symmetric whatever the sparsity and structure of the interaction

matrix Wn.

Therefore, in this model, a random shock in a given country will spill over the entire sample

and will have a global impact. It should be clear that the impact of a random shock hitting a

given country is by no means “local” in such a model. The diagonal elements of this matrix rep-

resent the direct impacts of random shocks affecting each of the countries of the sample, including

feedback effects, which are inherently heterogeneous in the presence of spatial autocorrelation due

to differentiated interaction terms in the WN matrix.16 This type of heterogeneity is called in-

teractive heterogeneity, in opposition to standard individual heterogeneity in panel data models

(Debarsy and Ertur, 2010). The off-diagonal elements of this matrix represent the indirect impacts

of random shocks.17 Considering column j of the impact matrix Ξε
y, a random shock in a given

country j will differently affect each of the countries of the sample. It represents the emission side

of the spatial diffusion process. Considering row i, random shocks in each of all the countries of

the sample will each differently affect country i even if they are common or identical. It represents

the reception side of the spatial diffusion process. Using obvious notations, we have the following:

∂yt,i
∂εt,i

≡ (Ξε
y)t,ii and

∂yt,i
∂εt,j

≡ (Ξε
y)t,ij (27)

The magnitude of those direct and indirect impacts of random shocks will depend on (1) the degree

of interaction between countries, which is governed by the WN matrix, and (2) the parameter λ,

measuring the strength of interactions or cross-sectional correlation between countries. Note that

feedback effects are at best of second order and may die out rather quickly, as can be easily seen

in equation (26), whereas indirect impacts, although presumably small in magnitude, should not

be a priori neglected.

A possible method for estimating spatial panel econometric models consists of using the direct

ML approach. However, the direct ML approach may suffer from the incidental parameter problem

discussed in Neyman and Scott (1948), who illustrate the inconsistency of the variance parameter

for the “a-spatial” linear panel data model when the time dimension is finite. Focusing on spatial

panel models, Lee and Yu (2010) show that the direct ML provides consistent estimates of regressor

coefficients. However, the direct ML provides inconsistent estimates of the variance parameter

when T is finite. Thus, Lee and Yu (2010) propose a consistent QML approach based on a data

transformation that eliminates the individual fixed effects. They also demonstrate that except for

the variance parameter, the estimates of the direct approach are identical to the corresponding

estimates of the transformation approach.

16More specifically, the own derivative for country i includes the feedback effects, where country i affects country

j and country j also affects country i, and longer paths that might go from country i to j to k and back to i.
17LeSage and Pace (2009) present a comprehensive analysis of those effects along with some useful summary

measures in the cross-section setting. Their extension to our panel data setting is straightforward. See, also,

Kelejian et al. (2006, 2008) for other applications.
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4 Results

4.1 Preliminary estimation results: the baseline specification

Table 2 summarises the results obtained by estimating the benchmark specifications presented

above. Column (i) shows the estimated parameters from the specification in equation (6), where

the model is estimated using Nonlinear Least Squares as in Keller (2002). The output elasticity

of domestic R&D capital stock, θ, is estimated to be 0.067 and is statistically significant. This

result is in line with the related empirical literature, such as Coe and Helpman (1995), Coe et al.

(2009), Lichtenberg and Van Pottelsberghe (2001) and Keller (2002). The estimated coefficient of

human capital (δ) is highly significant and of the same order of magnitude as that found by Coe et

al. (2009). The inclusion of human capital is relevant not only because it affects productivity and

the ability of firms to absorb information but also because it is potentially correlated with R&D;

hence, estimating the model without human capital should bias the coefficient associated with

R&D upward. In some previous studies (Barrio-Castro et al., 2002; Frantzen, 2000; Engelbrecht,

1997), this bias has been estimated to be approximately 20% to 30%. Next, we focus on the output

elasticity of foreign R&D capital stock incorporated into the geographical technology transfer

channel and how the effectiveness of such spillovers decreases with distance (i.e., we focus on the

parameters γ and ϕ). The output elasticity of foreign R&D capital stock incorporated into the

geographical technology transfer channel (γ) is estimated to be 0.042 and is significant at the 1%

level. In other words, we find evidence of positive (but small in magnitude) geographical spillovers

across countries. It is interesting to compare this result with those obtained using alternative

technology transfer channels. There is a large body of literature focusing on trade and FDI

that generally finds a larger point estimate but presents conflicting results regarding statistical

significance (Table 1). Conversely, analyses of technology diffusion via language skills are rare.

Musolesi (2007) finds a significant and quite high estimate (approximately 0.2) for the coefficient

associated with foreign R&D incorporated into language skills. The positive estimate of ϕ suggests

that the impact of such spillovers decreases with distance. This result is consistent with Bottazzi

and Peri (2003), who find that R&D spillovers are small in magnitude and highly localised in

European regions. Finally, we turn to the estimates of the benchmark specification in equation

(8), which allows the output elasticity with respect to foreign R&D to differ between large and

small countries (Table 2, column ii), and focus on the parameters γG7, γNOG7, ϕG7 and ϕNOG7.

Such a specification will be extended in the following sections to accommodate cross-sectional

dependence. Clearly, both elasticities are significant, and the effect of foreign R&D on TFP is

much higher for G7 than for non-G7 countries (γ̂G7 = 0.170, γ̂NOG7 = 0.026). This result is similar

to that of Lichtenberg and Van Pottelsberghe (2001), who focus on FDI spillovers. We also find

that the effectiveness of such spillovers decreases with distance more quickly for G7 than for non-

G7 countries (ϕ̂G7 > ϕ̂NOG7). In other words, the spillovers are more localised for G7 countries

than for smaller countries. These results suggest the existence of substantial differences between
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richer and poorer countries in terms of how effective they are in adopting foreign technology. Richer

countries are, according to our results, better at adopting foreign technology than poorer countries.

This pattern can be seen as consistent with the existence of a minimum level of absorptive capacity

allowing a country to benefit from foreign technology (see, e.g., Xu, 2000) and theories describing

how technology that is invented in frontier countries is less appropriate for poorer countries (e.g.,

Basu and Weil, 1998).

4.2 Testing for cross-sectional correlation

A widely adopted test, likely due to its useful small-sample properties, is the CD test developed

by Pesaran (2004). An interesting feature of this test is that, as shown by Pesaran (2012a),

the implicit null hypothesis of the CD test is, in the most common cases, weak cross-sectional

correlation. This assumption makes the test more appealing from an applied perspective because

when estimating a model, only strong cross-sectional correlation may pose serious problems. More

precisely, let us define ε as a measure of the degree to which T expands relative to N, as defined

by T = O (N ε) for 0 < ε ≤ 1 and a being the exponent of cross-sectional correlation introduced

in Bailey et al. (2013), which can take any value in the range [0, 1] , with 1 indicating the highest

degree of cross-sectional dependence, while a < 0.5 and a > 0.5 correspond to the cases of weak

and strong cross-sectional correlation discussed in CPT, respectively. Pesaran (2012a) shows that

the implicit null of the CD test is given by 0 ≤ a < (2− ε) /4. Thus, for ε close to zero (T almost

fixed as N → ∞), such a null hypothesis is 0 ≤ a < 1/2, whereas in the case where ε = 1 (N

and T →∞ at the same rate, as is roughly the case of the data used in this paper), the implicit

null of the CD test is given by 0 ≤ a < 1/4. The CD test has been performed on the residuals of

the benchmark specification (equation (8)) (Table 3). We also performed the CD test for all the

variables taken separately. The result of this test is a strong rejection of the null hypothesis in all

cases, suggesting that the exponent of cross-sectional correlation, a, is in the range [1/4, 1] .18

In order to discriminate between these two typologies of correlation and to obtain a measure

of the degree of such correlation, we adopt the method recently proposed by Bailey et al. (2013a)

and compute the bias corrected version of a for all the variables under study. With the exception

of Bailey et al. (2013a), this paper is, to the best of our knowledge, the first one providing fresh

empirical evidence on a for some relevant macroeconomic variables. Following Bailey et al. (2013a)

the Holm’s approach has been preferred over the Bonferroni procedure. The exponent of cross

sectional correlation a is estimated at about 0.999 for all the variables. This result concerns the

version of the estimator which is robust to serial correlation in the factors and weak cross-sectional

dependence in the error terms. Moreover the non-robust version of the estimator provides very

similar results with a ranging from 0.998 to 0.999. This is a very clear-cut result not only indicating

18The full correlation matrix of residuals is available upon request; the average absolute value of the its off-diagonal

elements is 0.470. Table 3 also reports the results of other tests based on the pair-wise correlation coefficients and

precisely provides the tests by Frees (1995) and Friedman (1937). Both are discussed in Sarafidis and Wansbeek

(2012). Both tests strongly reject the null hypothesis of cross-sectional independence.
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the presence of strong cross-sectional correlation but also being consistent with the factor literature

typically assuming a = 1 (Stock and Watson, 2002; Bai and Ng, 2002). A first implication of this

result is that in our empirical framework almost all the existing cross sectional correlation can be

modeled with common factors while other spatial linkages plays a very marginal role. The second

implication is that we do not encounter the problems arising when the assumption that a = 1 fails

and which are discussed in Chudick et al. (2011), Kapetanios and Marcellino (2010) and Onatski

(2012).

4.3 Testing for unit roots

We start by considering some first-generation tests, notably the test proposed by Im, Pesaran

and Shin (2003) (IPS) and the Fisher-type tests introduced by Maddala and Wu (1999) and

further developed by Choi (2001). These are ADF-type tests where the non-stationarity null

hypothesis that the coefficient associated with the autoregressive term is zero for all cross-sections

is tested against the alternative that such a coefficient is negative for some cross-sections and is

zero for others (see also Pesaran, 2012b). We then move to second-generation tests allowing for

cross-sectional dependence. We both consider augmented ADF-type specifications (Pesaran, 2007;

Pesaran et al., 2013) and tests decomposing the panel into deterministic, common and idiosyncratic

components (Bai and Ng, 2004; Moon and Perron, 2004; Choi, 2006). We report here the main

conclusions of our analysis. While most of the previous works find evidence of nonstationary

variables by applying first-generation tests (see among others, Coe et al. 2009), we provide a more

nuanced and thorough picture. First, focusing on first-generation tests, we documented that when

the number of lags of the autoregressive component of heterogeneous ADF-type specifications is

estimated in a model selection framework, the null of nonstationarity for all the cross-sectional

units is rejected, suggesting that for some countries the variables are, in fact, stationary. Secondly,

adopting second generation tests allows us to provide further and interesting insights. On one

hand, indeed, the use of augmented ADF-type specifications (Pesaran, 2007; Pesaran et al., 2013),

which are built ruling out the possibility of the factors having unit roots, confirms the previous

findings and goes towards the rejection of the null hypothesis. On the other hand, the adoption of

tests decomposing the panel into deterministic, common and idiosyncratic components (Bai and

Ng, 2004; Moon and Perron, 2004; Choi, 2006) suggest that while the unobserved idiosyncratic

component of the variables under study is stationary, the unobserved common factors seem to be

be nonstationary. The main results focusing on second generation tests (Bai and Ng, 2004; Moon

and Perron, 2004; Pesaran, 2007; Pesaran et al., 2013) are provided in tables 4, 5 and 6 while a

more detailed discussion and all the results are available in the online appendix 1.

These results are very relevant for an empirical perspective and are related to the recent

work by Kapetanios et al. (2011). They partitioned the vector of observed common factors as

dt =
(
d

′
1t,d

′
2t

)′
where d1t is an l1×1 vector of determinstic components and d2t is an l2×1 vector

of unit root observed common factors, with l1 + l2 = l and then suppose that the (l2 +m) × 1
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vector of stocastic common effects ht =
(
d

′
2t, ξ

′
t

)′
follows a multivariate unit root process. Both

analytical results and a simulation study indicate that the CCE approach is still valid when the

unobserved factors are allowed to follow unit root processes.

4.4 CCEP estimation results

Next, we adopt the CCEP approach. Our estimates (in Table 2) are obtained using alternative

definitions of the vector dt of observed common factors. The results are structured as follows. In

column (iii), as in Mastromarco et al. (2012), a linear time trend is used as an observed common

factor, such that dt = (ι, t)′. In column (iv), more flexibility is allowed by adding a squared time

trend, such as dt = (ι, t, t2)
′
. Finally, in columns (v) and (vi), the oil price, denoted p, is added

to the previous two specifications such that dt = (ι, t, p)′ and dt = (ι, t, t2, p)
′
, respectively.

The results provide a robust picture. The coefficient associated with domestic R&D is always

very close to zero, ranging from -.0043 to 0.026, and is never significant at standard levels. In other

words, both the estimated coefficient of domestic R&D and its significance level have decreased

substantially with respect to the benchmark specification. Conversely, adopting the CCEP method

increases the effect of external R&D. For G7 countries, the effect of foreign R&D on TFP ranges

from 0.22 to 0.46, which is statistically significant at least at 5% in all cases, whereas for the other

countries, the effect ranges from 0.12 to 0.34 but is only statistically significant for the specification

in column (vi). Finally, human capital is found to be insignificant at standard levels, although the

estimated coefficient ranges between 0.19 and 0.37.19

These results are meaningful with respect to both the magnitude of the estimated coefficients

and their significance levels. The very low (and not significant) estimate of the coefficient associ-

ated with domestic R&D complements Eberhardt et al. (2012), who estimate a knowledge capital

production function à la Griliches - i.e. a production function augmented with domestic R&D – at

industry level, and find that when unobserved common factors are introduced, the effect of R&D

is close to zero and no longer significant. The high value of the estimated coefficient for foreign

R&D is another result what seems interesting to us. Indeed, our results indicate not only that

unobserved common factors matter for enhancing productivity growth, and that their inclusion in

19It is worth to note that the foreign RD is a weighted average of domestic R&D, i.e. 1G7 log
∑
j 6=i

exp(−ϕG7dij)S
d
jt

and 1NOG7 log
∑
j 6=i

exp(−ϕNOG7dij)S
d
jt, for G7 and non-G7 countries, respectively and that the CCE procedure

inroduces in the regression another average of domestic R&D, logSd
t . One may wonder if and how these quantities

are correlated and if this correlation may affect the results. A closer look to the data indicates that the correlation

between the observed variables, zit, and the cross-sectional averages, zt, is not very high, ranging from 0.44 to 0.80,

and in particular the correlation coefficient between logSd
t and the foreign R&D is quite low: 0.44 and 0.62 for G7

and non-G7 countries, respectively. These correlations are of the same order of magnitude than the correlations

between foreign R&D stocks and the others cross-sectionally averaged variables. The correlation of cross-sectional

averaged variables among themselves is, instead, very high in all cases ranging between 0.97 and 0.99. Such variables

also present a high degree of correlation with the trend and the squared trend. Finally, it can be noticed that the

oil price presents a low degree of correlation with both zit and zt (detailed results are available upon request).
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the model decreases the effect of domestic R&D, but also suggest that all types of spillovers, both

observed (foreign R&D) and unobserved (common factors), may play a key role in explaining TFP

growth.

Concerning the inference provided by these estimates, it may be interesting to recall the Monte

Carlo simulations by Pesaran (2006) made under the assumption that the DGP is characterised

by unobserved common factors. For N = T = 20, these simulations indicate that, whereas the

näıve estimators (i.e., the estimators that do not account for cross-sectional correlation, such as

the LSDV) are oversized but have high power, the CCE estimators have the correct size but have

low power. Moreover, Pesaran and Tosetti (2011) (see Bresson and Hsiao, 2011, for additional

results) provide interesting simulations under the assumption that the error is generated by a

spatial autoregressive model or is a mixture of a spatial process and a multifactor model. In all

cases (for T = N = 20), the CCE estimators have better size than any others (including the ML

spatial error estimator) but low power compared to the alternative estimators.20

These simulation results may have relevant implications in our context, especially for the

coefficient associated with foreign R&D for the countries that do not belong to the G7 group.

The point estimate of this coefficient is high, taking values of 0.12, 0.16, 0.21 and 0.34 (from

column (iii) to (vi)), and the corresponding t values, which are also relatively high, range from

0.93, 1.11, 1.44 to 2.27 respectively. This finding might suggest that in some cases, our inference

erroneously indicates a non-significant effect of foreign R&D for the non-G7 countries. Finally, it

is also interesting to note that both the magnitude of the estimated parameter, γNOG7, and the

corresponding significance level increase with the number of observed common factors introduced

in the CCEP framework.

Finally, comparing the results with those obtained with a spatial panel data model with

spatially autocorrelated errors, as in equation (23), may provide some interesting insights on

the possible bias occurring when allowing only for weak correlation while strong correlation is

present in the data. Therefore, considering an interaction matrix with typical element wij =

exp(−φdij)/
∑

j exp(−φdij) to model interactions between countries i and j, a spatial model has

been estimated by the QML approach proposed by Lee and Yu (2010), and the estimation results

are presented in Table 7. We also consider adding the trend, the trend squared and the oil price

as in the CCEP estimation. Again, the results are not sensitive to the different specifications

for the observed common factors. Introducing such observed common variables makes decrease

the estimated parameters for all the explanatory variables. In particular, both the foreign R&D

for non-G7 countries and the human capital become not significant at standard levels. This is

the same result we obtain from the a-spatial baseline specification when such observed common

factors are introduced (results available upon request). However, in contrast to the CCEP esti-

mation results, it appears immediately that the estimated coefficient for domestic R&D is about

0.04 and remains highly significant. In summary, when using a spatial model instead of a model

20These simulations also show that the CCE estimators are superior to all competitors with respect to bias when

the errors are a mixture of a spatial and a multifactor process.
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with multifactor error structure, we obtain a higher effect of domestic R&D and a lower effect of

foreign R&D for G7 countries. This is a relevant result both in terms of econometric modelling

and with respect to the policy implications. This result may be due to the bias induced by strong

cross-section correlation, which is not taken into account in the spatial econometric approach.21

5 Conclusion

This paper provides an analysis of international technology diffusion by accounting for the role of

cross-country correlation when estimating the econometric specification. Theoretical consistency,

empirical relevance and exogeneity arguments have allowed us to focus on geographical proximity

as a channel of technology diffusion.

Cross-sectional dependence can be taken into account using two alternative approaches: unob-

served common factors and spatial models. The motivations underlying these two approaches are

completely different. The first approach is related to the notion of strong cross-sectional depen-

dence and is based on a parsimonious way to capture information in a data rich environment using

a small number of unobserved factors, which are allowed to be freely correlated with the condition-

ing variables. The second approach is related to weak cross-sectional dependence. It is explicitly

oriented towards modeling cross-sectional interactions and capturing spatial spillovers. There are

no theoretical or empirical reasons to a priori favor one of them and the type of cross-sectional

dependence should be tested before estimating the most suitable model.

A preliminary analysis based on the CD test proposed by Pesaran (2004, 2012a) and on the

estimation of the exponent of cross section correlation, proposed by Bailey et al. (2013a), provides

a very clear-cut result in favor of strong correlation. Indeed, first, the CD test strongly rejects the

null. Using the results by Pesaran (2012a) and given the size of our sample (N and T of the same

order), this result suggests a situation in which 1/4 ≤ a ≤ 1, where a is the exponent of cross-

sectional correlation introduced in Bailey et al. (2013a), which can take any value in the range

[0, 1] , with 1 indicating the highest degree of cross-sectional dependence, and where a < 0.5 and

a > 0.5 correspond to the cases of weak and strong cross-sectional correlation discussed in Chudick

et al. (2011), respectively. Given this, we focus on the estimation of a and obtain an estimate

of a very close to unity, not only indicating the presence of strong cross-sectional correlation but

also being consistent with the factor literature typically assuming that a = 1. Moreover, before

moving to the estimation, we also study the order of integration of the variables of interest using

several tests, most of which allow for cross-sectional dependence (Pesaran, 2007; Pesaran et al.,

2013; Bai and Ng, 2004; Moon and Perron, 2004; Choi, 2006). While most of the previous works

find evidence of nonstationary variables by applying first-generation tests (see among others, Coe

et al. 2009), we provide a more nuanced and thorough picture, in the end suggesting that while

the unobserved idiosyncratic component of the variables under study is stationary, the unobserved

21The results are very robust to the choice of the exponential decay parameter of the spatial autoregressive

component φ, which take three different values (1, 5 and 10).
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common factors seem to be nonstationary. This result is very relevant for an empirical perspective

and is related to the recent work by Kapetanios et al. (2011) showing that the CCE approach

is still valid when the unobserved factors are allowed to follow unit root processes. Finally, the

model is estimated with the CCE approach and the results are compared with those obtained with

a spatial model providing some interesting insights on the possible bias occurring when allowing

only for weak correlation while strong correlation is present in the data.
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Appendix: Panel Unit Root Tests

We first present the results obtained using the test proposed by Im, Pesaran and Shin (2003) (IPS) and the Fisher-

type tests introduced by Maddala and Wu (1999) and further developed by Choi (2001). These tests allow the same

degree of heterogeneity: let define δ as the coefficient associated with the autoregressive term in the ADF type

regression; Levin, Lin and Chu (2002), among others, propose a test assuming that this coefficient is the same for

all cross sections. As noted by Maddala and Wu (1999), whereas the null unit root hypothesis (δ = 0) is appropriate

in some empirical applications, the alternative (δ < 0) seems to be too strong to hold in any relevant case. Im,

Pesaran and Shin (2003); Maddala and Wu (1999); and Choi (2001) relax the assumption that δ1 = δ2. . . = δN

under the alternative, allowing under such alternative some of the individual series to have a unit root, say δi < 0

for i = 1, ..., N1 and δi = 0 for i = N1 + 1, ..., N with 0 < N1 < N (see also Pesaran, 2012). Both tests combine

the information obtained from the N independent individual tests and (at least when linear trends are included in

the deterministic component and the errors are serially correlated) both tests obtain their asymptotic properties

by first sending T to infinity and then N to infinity, (T,N)→seq ∞.22

In performing the tests, we make the following choices: i) because the series are clearly trended, linear time

trends have been included in the deterministic component, and ii) the selection of the lag order of the autoregressive

components p has to be performed carefully because it is well known that ADF-type tests are highly sensitive to

this choice. There is, of course, a delicate balance between choosing a p that is sufficiently large to allow for

serially uncorrelated residuals and, simultaneously, sufficiently small such that the model is not overparameterised.

Moreover, this choice is crucial because if k is overestimated this may decrease the power of the test while if it

is underestimated, this may invalidate the asymptotic distribution of the test (see also Westerlund and Breitung,

2009, for a more detailed discussion of this issue).Therefore, the order of the (individual) AR components has been

chosen using alternative criteria (AIC, SBC, HQIC) subject to a maximum lag of 3.

The IPS test is based on combining individual ADF t statistics. The reported standardised statistic – the

Wt−bar – has an asymptotically standard normal distribution and has been shown to perform well even in small

samples. The results in table A1 have three major implications. First, the test is highly sensitive to the number

of lags of the AR component, k. Second, when the number of lags k is chosen with AIC, BIC or HQIC, there is

strong evidence against the null hypothesis for all variables. This, thus suggests that some of the individual series

in the panel are, in fact, stationary.

Next, we use the Fisher-type tests (Fisher, 1932) provided by Maddala and Wu (1999) and Choi (2001) based

on combining the p-values of the N independent test statistics. Two statistics are provided here, labeled P and Z.

These values differ in whether they use the inverse chi-square or the inverse normal distribution of the p-values.23

The Fisher-type statistics (in table A1) fully confirm the IPS tests.

Recent work has demonstrated the importance of accounting for cross-sectional correlation when testing the

22Although the sequential limit results may appear to be more restrictive than the joint limit results obtained

by sending T and N to infinity simultaneously, it has been shown that the sequential and joint limit results are

identical under additional moment conditions (Phillips and Moon, 1999). As a practical matter, this means that

in both cases, a reasonably large number of time periods and cross-sections are required to implement these tests.
23Choi’s (2001) simulation results suggest the use of the Z statistic, which offers the best trade-off between size

and power. With the aim of comparing Fisher-type tests to the IPS test, Choi (2001) finds that the Fisher tests

are more powerful than the IPS test in finite samples, and Maddala and Wu (1999) confirm this finding even when

the errors are cross-correlated.
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unit root hypothesis. Pesaran’s (2007) simulations show that tests assuming cross-sectional independence tend

to over-reject the null hypothesis if cross-sectional correlation is present. Baltagi et al. (2007) find that when

spatial autoregression is present, first-generation tests become oversised, but the tests explicitly allowing for cross-

sectional dependence yield a lower frequency of type I errors. As noted by Pesaran (2007), subtracting the cross-

sectional averages from the series before applying the panel unit root test can mitigate the impact of cross-sectional

dependence even if cross-sectional demeaning could not work in general in conditions under which the pairwise

cross-sectional errors’ covariances differ across individuals.24 Moreover, while weak cross section correlation can

be dealt by a simple correction of the tests, the presence of strong cross section correlation is more problematic,

making the tests statistics becoming divergent (Westerlund and Breitung, 2009). Since we clearly documented the

presence of strong correlation in our data, it is of fundamental importance applying the so-called second generation

unit root tests (Bai and Ng, 2002, 2004; Moon and Perron, 2004; Pesaran, 2007, Pesaran et al. 2013).

Bai and Ng (2004) propose decomposing the panel into deterministic, common and idiosyncratic components,

i.e.

yit = Dit + ζ
′

i ft + vit,

where Dit is the deterministic component with individual effects and eventually individual trends, ζ
′

i ft the common

component, with r unobserved factors, and vit the idiosyncratic component. Such a decomposition allows consid-

ering factors as objects of interest and understanding not only if the data are stationary or not but also if the

eventual nonstationarity derives from nonstationary common component, nonstationary idiosyncratic component

or nonstationarity of both components. More precisely, Bai and Ng (2004) also assume that

(I− L) ft = C (L)ut,

(1− ρi) vit = Bi (L) εit

where C (L) =
∑∞

j=0CjL
j and Bi (L) =

∑∞
j=0BijL

j . The idiosyncratic component is I(1) if ρi = 1 and

is stationary if ρi < 1. There are r0 stationary common factors and r1 common stochastic trends, so that

r0 + r1 = r, the total number of factors; the rank of C (1) is r1. The goal of Bai and Ng (2004) is to determine r1

and test if ρi = 1 when neither ft nor vit is observed. This approach is known as the PANIC (panel analysis of

nonstationarity in idiosyncratic nd common components) approach. A preliminary issue that arises is to determine

how many common factors, r, are necessary to capture the existing cross sectional correlation. To this end, we

will employ the information criteria suggested by Bai and Ng (2002). They have been built with a similar spirit

than the AIC and BIC criteria for time series, involving a trade-off between some measure of fit and a penalty for

complexity. As the number of factors increase, the fit must improve but the penalty also increases. We compute all

the criteria but following a relevant literature (Bai and Ng, 2002; Moon and Perron, 2007; Hurlin, 2010), we pay

particular attention to the IC2 and BIC3 criteria which are expected to minimize the risk of overestimating the

number of factors.25 These criteria are applied to factors estimated by principal components on first differences

24We have performed both the IPS test and the Fisher-type tests on the demeaned series, and the (non-reported)

results are fully consistent with results obtained without demeaning (reported in table 2).
25According to Bai and Ng (2002), the IC2 selects the true number of factors and dominate the other criteria.

The BIC3 has been shown (Bai and Ng, 2002) to perform better than the others when min(T,N) ≤ 20 and T and

N are roughly of the same size; this result holds even if the BIC3 does not satisfy the conditions for consistency

when either N or T dominates the other exponentially.
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(Bai and Ng, 2004). Recent literature suggests that a small number if unobserved common factors is sufficient to

explain most of the variations in many macroeconomic variables (see e.g. Stock and Watson, 2002; Pesaran et al.,

2013; Moon and Perron, 2007 and Hurlin, 2010). We start our analysis by following such a literature and apply

the above discussed criteria by imposing that the maximum number of factors is 4 as in Pesaran et al. (2013).

In almost all cases the criteria suggest that the number of unobserved factors, r, equals the maximum number we

allowed, 4. This is the same result by Pesaran (2007) and by Pesaran et al. (2013) and it is not surprising given

our sample sizes (see also Gutierrez, 2006). This suggests that the number of factors could be even higher than 4.

However, given the possibility that the criteria over estimate the number of factors and the number of observations

available, Pesaran et al. (2013) do not allow that the maximum number of factors could be greater than 4. We

provide our main results doing the same thing but, as a robustness check available upon request, we also perform

the procedure by Bai and Ng (2004) to test the stationarity in the common component, to identify the number

of nonstationary common factors (if they exists) and to test the stationarity in the idiosyncratic component for

different values of r in the range 1− 15 (table A2).

It is interesting to note that the nonstationarity of the idiosyncratic components can be tested without knowing

if the factors are stationary, and vice versa. The only thing it is needed to know is the total number of factors, r.

This is why, given the considerable uncertainity that surrounds the number of factors, we perform the tests for a

large range of possible values of r. In order to test the nonstationarity of idiosyncratic components, Bai and Ng

(2004) proceed pooling individual ADF t statistics obtained on de-factored components. Pooling, however, requires

cross-sectional independence of the idiosyncratic components. Since the idiosyncratic components in a factor model

can only be weakly correlated across units by construction while the factors involve strong correlation, it appears

that the pooled tests based on de-factored components are likely to satisfy the required cross-sectional independence

assumption. The two Fisher type statistics proposed by Bai and Ng (2004), and denoted P c
e and Zc

e provide strong

evidence towards the rejection of the null hypothesis of nonstationarity of the idiosyncratic components for all the

variables. For domestic R&D, foreign R&D and human capital the null is rejected irrespective of the value of r,

the total number of common factors, while for TFP, the null is rejected in many cases. The rejection of the non

stationarity of the idiosyncratic component does not imply that the series are stationary, since some of the common

factors may be non-stationary. We have already tried to determine the total number of factors using information

criteria on first differences and the next task is thus to determine how many of these factors are nonstationary.

For this purpose, we follow Bai and Ng (2004) and proceed as follows. For r = 1, we use a standard ADF test, its

rejection indicates that the unique common factor is stationary, while for r > 1, we look at the MQf and MQc

statistics. The limiting distributions of these statistics are nonstandard, and critical values are reported in Bai and

Ng (2004) up to 6 factors. The results provide a very clear-cut picture: for all the variables, whatever the test used,

the number of nonstationary common factors, r1, is always equal to the total number of common factors, r. This

is the same result found by Hurlin (2010). The application of the PANIC approach by Bai and Ng (2004) suggest

thus that the variables are nonstationary and that this property is the result of multiple nonstationary common

factors combined with stationary idiosyncratic components.

Next, to further investigate the order of integration of the variables of interest, we follow Moon and Perron

(2004), who also allow for r unobserved common factors but propose expressing the panel in an autoregressive form

of the type
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yit = Dit + y0it,

y0it = ρiy
0
it−1 + uit ,

uit = ζ
′

i ft + vit.

As in Bai and Ng (2004), data are first defactored and then panel unit root test statistics based on de-factored

data are proposed. Moon and Perron (2004), however, consider the factors to be nuisance parameters and the

unit root test is only based on the estimated idiosyncratic components. This is a relevant difference with respect

to Bai and Ng (2004). The proposed test statistic uses defactored data obtained by projecting the data onto the

space orthogonal to the factor loadings. The authors derive two modified t statistics - denoted ta and tb - which

have a Gaussian distribution under the null hypothesis, and propose the implementation of feasible statistics - t∗a

and t∗b - based on the estimation of long-run variances. To assess the robustness of the results to the choice of the

kernel function used to estimate the long-run variances, we compute t∗a and t∗b with both quadratic spectral and

Bartlett kernels. In Moon and Perron (2004), the above mentioned information criteria to detect the number of

common factors are applied on residuals (rather than on first-differences). Such criteria provide the same results

we obtained using PANIC tending to select the maximum number of factors which is allowed, that is 4. In almost

all cases (except for foreign R&D), these tests strongly reject the unit root hypothesis (table A3). As for PANIC,

we then perform the tests for all the possible values of r in the range 1-15 . for TFP, domestic R&D and human

capital, in almost all cases these tests strongly reject the unit root hypothesis of the idiosyncratic components,

while for foreign R&D the results of the tests dipend crucially to r. The null hypotesis is often not rejected for r

in the range 5-9 while it is always rejected for 10 ≤ r ≤ 15.26

Another test we perform is that proposed by Choi (2006), who uses a two-way error-component model rather

than a factor model. Such a model differs from that proposed by Moon and Perron (2004) mainly because each

cross-sectional unit is influenced homogeneously by a single factor, so that the component ζ
′

i ft is replaced with ft,

and ζi = ζ for all i. To perform this test, the common component and cross-sectional correlations are eliminated by

GLS detrending (Ellitot et al., 1996) and cross-sectional demeaning. Three Fisher-type statistics - denoted Pm, Z,

L∗ - are obtained by combining p-values from the ADF test applied to each (detrended and demeaned) individual

time series. From an applied perspective, such an approach can be viewed as complementary to Moon and Perron

(2004). Indeed, Gutierrez (2006) has shown through Monte Carlo simulation that Moon and Perron’s tests have

a better size than Choi’s when the common factor influences the cross-sectional units heterogeneously; however,

Choi’s test performs well under the more restrictive assumption that the cross-sectional units are homogeneously

influenced by the common factor, and in a few cases, it outperforms Moon and Perron’s test in terms of power.

Additionally, for such a test (in table A4), the choice of the lags is crucial, and when such a choice is made with

the AIC (or other non-reported criteria), it clearly goes toward the rejection of the null hypothesis.

Finally, we implement the tests which have been proposed by Pesaran (2007) and Pesaran et al. (2013).

Instead of basing the unit roots tests on deviations from the estimated factors, they augment standard ADF

regressions with cross sectional averages. In the case of a single unobserved common factor, Pesaran (2007)

suggests augmenting the standard (individual) ADF regression with the cross-sectional average of first differences

(∆ȳt = N−1
∑N

i=1 ∆yit = yt − yt−1) and lagged levels (ȳt−1) of the individual series, which are
√
N - consistent

26Results available from the authors upon request.
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estimators for the rescaled factors ζ̄f and ζ̄
∑t−1

j=0 fj , respectively, where ζ̄ = N−1
∑N

i=1 ζi. This expression gives the

cross-sectionally augmented Dickey-Fuller (CADF) statistics; the individual CADF statistics are used to develop

a modified version of the IPS test named CIPS. However, Monte Carlo experiments show that Pesaran’s CIPS test

has desirable small sample properties in the presence of a single unobserved common factor but show size distortions

if the number of common factors exceeds unity. Recently, Pesaran et al. (2013) extend Pesaran’s CIPS test to the

case of a multifactor error structure. They propose to utilise the information contained in a number of k additional

variables, xit , that are assumed to share the common factors of the series of interest, yit. In particular, they

propose two tests. The first test, CIPS, is an extension of the test proposed in Pesaran (2007) and is based on the

average of t-ratios from ADF regressions augmented by the cross section averages of the dependent variable as well

as k additional regressors. The second test, CSB, exploits cross-sectional augmentation for the Sargan–Bhargava

test. It is worth noting that the perspective of these tests is quite different with respect to that of Bai and Ng

(2004). Indeed, while Bai and Ng (2004) consider whether the source of non-stationarity is due to the common

factors and/or the idiosyncratic components, neither of which are observed directly, Pesaran et al. (2013) aim to

test for the presence of a unit root in the yit process, which is observed. In doing so, they adopt an auto-regressive

specification augmented with common factors and the unit root test if performed by testing that the auto-regressive

component of the specification expressed in first difference, δi, is 0 for all i against the alternative which can be

expressed as δi = 0 for some countries but δi < 0 for some others. In such a set up, they rule out the possibility of

the factors having unit roots since otherwise all series in the panel could be I(1) irrespective of whether δi = 0 or

not. To deal with the uncertainty that surrounds the value of r, we follow Pesaran et al. (2013) and consider the

application of the CIPS and CSB tests allowing the number of factors, r = k+1, to take any value between 1 and 4

and present the results of these tests for all possible combinations of regressors. When k = 3, we implicitly assume

that the four observed variables used in the econometric analysis, fit, S
d
it, S

f
it, Hit share the same common factors.

While Pesaran et al. (2013) set the lag order, p̂ =
[
4 (T/100)

1/4
]
, in our case, this rule gives p̂ = 2.6. However, for

p = 3 we encounter computational problems in many cases and even for p = 2 we had the same problems in few

cases. To provide comparable results for all possible combinations of regressors we thus set p = 1, while results for

p = 0 and p = 2 are available upon request. The results are summarised in Table A5. The test outcomes are as

follows. When the CSB test is used, the null hypothesis of a panel unit root is rejected in almost all cases for all

the variables under investigation. When the CIPS test is used, the results are mixed and crucially depend on the

variables which are used to augment the ADF regression. Rejection of the null hypothesis is more likely to appear

when r ≥ 3. It is worth noting that according to Pesaran et al. (2013), for small T , the CSB test has higher power

than that of CIPS, and should thus be preferred in such cases.
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